深度学习记录--归—化输入特征

归化

归化输入(normalizing inputs),对特征值进行一定的处理,可以加速神经网络训练速度

步骤

零均值化

通过x值更新让均值稳定在零附近,即为零均值化

归化方差

适当减小变量方差

解释

归化可以让原本狭长的数据图像变得规整,梯度下降的迭代次数减少,训练速度变快

方法

Python实现数据预处理--特征标准化与归一化_不同特征之间的差异过大如何处理-CSDN博客

相关推荐
Elastic 中国社区官方博客5 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jwolf26 分钟前
摸一下elasticsearch8的AI能力:语义搜索/vector向量搜索案例
人工智能·搜索引擎
有Li15 分钟前
跨视角差异-依赖网络用于体积医学图像分割|文献速递-生成式模型与transformer在医学影像中的应用
人工智能·计算机视觉
新加坡内哥谈技术35 分钟前
Mistral推出“Le Chat”,对标ChatGPT
人工智能·chatgpt
GOTXX43 分钟前
基于Opencv的图像处理软件
图像处理·人工智能·深度学习·opencv·卷积神经网络
IT古董1 小时前
【人工智能】Python在机器学习与人工智能中的应用
开发语言·人工智能·python·机器学习
CV学术叫叫兽1 小时前
快速图像识别:落叶植物叶片分类
人工智能·分类·数据挖掘
WeeJot嵌入式1 小时前
卷积神经网络:深度学习中的图像识别利器
人工智能
糖豆豆今天也要努力鸭2 小时前
torch.__version__的torch版本和conda list的torch版本不一致
linux·pytorch·python·深度学习·conda·torch
脆皮泡泡2 小时前
Ultiverse 和web3新玩法?AI和GameFi的结合是怎样
人工智能·web3