机器学习(六) — 评估模型

Evaluate model

1 test set

  1. split the training set into training set and a test set
  2. the test set is used to evaluate the model

1. linear regression

compute test error

J t e s t ( w ⃗ , b ) = 1 2 m t e s t ∑ i = 1 m t e s t [ ( f ( x t e s t ( i ) ) − y t e s t ( i ) ) 2 ] J_{test}(\vec w, b) = \frac{1}{2m_{test}}\sum_{i=1}^{m_{test}} \left [ (f(x_{test}^{(i)}) - y_{test}^{(i)})^2 \right ] Jtest(w ,b)=2mtest1i=1∑mtest[(f(xtest(i))−ytest(i))2]

2. classification regression

compute test error

J t e s t ( w ⃗ , b ) = − 1 m t e s t ∑ i = 1 m t e s t [ y t e s t ( i ) l o g ( f ( x t e s t ( i ) ) ) + ( 1 − y t e s t ( i ) ) l o g ( 1 − f ( x t e s t ( i ) ) ] J_{test}(\vec w, b) = -\frac{1}{m_{test}}\sum_{i=1}^{m_{test}} \left [ y_{test}^{(i)}log(f(x_{test}^{(i)})) + (1 - y_{test}^{(i)})log(1 - f(x_{test}^{(i)}) \right ] Jtest(w ,b)=−mtest1i=1∑mtest[ytest(i)log(f(xtest(i)))+(1−ytest(i))log(1−f(xtest(i))]

2 cross-validation set

  1. split the training set into training set, cross-validation set and test set
  2. the cross-validation set is used to automatically choose the better model, and the test set is used to evaluate the model that chosed

3 bias and variance

  1. high bias: J t r a i n J_{train} Jtrain and J c v J_{cv} Jcv is both high
  2. high variance: J t r a i n J_{train} Jtrain is low, but J c v J_{cv} Jcv is high
  1. if high bias: get more training set is helpless
  2. if high variance: get more training set is helpful

4 regularization

  1. if λ \lambda λ is too small, it will lead to overfitting(high variance)
  2. if λ \lambda λ is too large, it will lead to underfitting(high bias)

5 method

  1. fix high variance:
    • get more training set
    • try smaller set of features
    • reduce some of the higher-order terms
    • increase λ \lambda λ
  2. fix high bias:
    • get more addtional features
    • add polynomial features
    • decrease λ \lambda λ

6 neural network and bias variance

  1. a bigger network means a more complex model, so it will solve the high bias
  2. more data is helpful to solve high variance
  1. it turns out that a bigger(may be overfitting) and well regularized neural network is better than a small neural network
相关推荐
Xxtaoaooo23 分钟前
Sora文生视频技术拆解:Diffusion Transformer架构与时空建模原理
人工智能·架构·音视频·transformer·sora
lisw0523 分钟前
数字化科技简化移民流程的 5 种方式
大数据·人工智能·机器学习
空白到白33 分钟前
Transformer-解码器_编码器部分
人工智能·深度学习·transformer
悟乙己33 分钟前
PandasAI :使用 AI 优化你的分析工作流
人工智能·pandas·pandasai
东临碣石8239 分钟前
【AI论文】CoDA:面向协作数据可视化的智能体系统
人工智能
中杯可乐多加冰1 小时前
无代码开发实践 | 基于权限管理能力快速开发人力资源管理系统
人工智能·低代码
钊气蓬勃.1 小时前
深度学习笔记:入门
人工智能·笔记·深度学习
神码小Z1 小时前
特斯拉前AI总监开源的一款“小型本地版ChatGPT”,普通家用电脑就能运行!
人工智能·chatgpt
IT_陈寒1 小时前
Redis性能翻倍的7个冷门技巧:从P5到P8都在偷偷用的优化策略!
前端·人工智能·后端
AKAMAI1 小时前
直播监控的生死时速:深夜告警引发的系统崩溃危机
人工智能·云计算·直播