机器学习(六) — 评估模型

Evaluate model

1 test set

  1. split the training set into training set and a test set
  2. the test set is used to evaluate the model

1. linear regression

compute test error

J t e s t ( w ⃗ , b ) = 1 2 m t e s t ∑ i = 1 m t e s t [ ( f ( x t e s t ( i ) ) − y t e s t ( i ) ) 2 ] J_{test}(\vec w, b) = \frac{1}{2m_{test}}\sum_{i=1}^{m_{test}} \left [ (f(x_{test}^{(i)}) - y_{test}^{(i)})^2 \right ] Jtest(w ,b)=2mtest1i=1∑mtest[(f(xtest(i))−ytest(i))2]

2. classification regression

compute test error

J t e s t ( w ⃗ , b ) = − 1 m t e s t ∑ i = 1 m t e s t [ y t e s t ( i ) l o g ( f ( x t e s t ( i ) ) ) + ( 1 − y t e s t ( i ) ) l o g ( 1 − f ( x t e s t ( i ) ) ] J_{test}(\vec w, b) = -\frac{1}{m_{test}}\sum_{i=1}^{m_{test}} \left [ y_{test}^{(i)}log(f(x_{test}^{(i)})) + (1 - y_{test}^{(i)})log(1 - f(x_{test}^{(i)}) \right ] Jtest(w ,b)=−mtest1i=1∑mtest[ytest(i)log(f(xtest(i)))+(1−ytest(i))log(1−f(xtest(i))]

2 cross-validation set

  1. split the training set into training set, cross-validation set and test set
  2. the cross-validation set is used to automatically choose the better model, and the test set is used to evaluate the model that chosed

3 bias and variance

  1. high bias: J t r a i n J_{train} Jtrain and J c v J_{cv} Jcv is both high
  2. high variance: J t r a i n J_{train} Jtrain is low, but J c v J_{cv} Jcv is high
  1. if high bias: get more training set is helpless
  2. if high variance: get more training set is helpful

4 regularization

  1. if λ \lambda λ is too small, it will lead to overfitting(high variance)
  2. if λ \lambda λ is too large, it will lead to underfitting(high bias)

5 method

  1. fix high variance:
    • get more training set
    • try smaller set of features
    • reduce some of the higher-order terms
    • increase λ \lambda λ
  2. fix high bias:
    • get more addtional features
    • add polynomial features
    • decrease λ \lambda λ

6 neural network and bias variance

  1. a bigger network means a more complex model, so it will solve the high bias
  2. more data is helpful to solve high variance
  1. it turns out that a bigger(may be overfitting) and well regularized neural network is better than a small neural network
相关推荐
冰西瓜6007 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术7 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
偶信科技7 小时前
国产极细拖曳线列阵:16mm“水下之耳”如何撬动智慧海洋新蓝海?
人工智能·科技·偶信科技·海洋设备·极细拖曳线列阵
Java后端的Ai之路7 小时前
【神经网络基础】-神经网络学习全过程(大白话版)
人工智能·深度学习·神经网络·学习
庚昀◟8 小时前
用AI来“造AI”!Nexent部署本地智能体的沉浸式体验
人工智能·ai·nlp·持续部署
喜欢吃豆8 小时前
OpenAI Realtime API 深度技术架构与实现指南——如何实现AI实时通话
人工智能·语言模型·架构·大模型
数据分析能量站8 小时前
AI如何重塑个人生产力、组织架构和经济模式
人工智能
wscats9 小时前
Markdown 编辑器技术调研
前端·人工智能·markdown
AI科技星9 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
GIS数据转换器9 小时前
基于知识图谱的个性化旅游规划平台
人工智能·3d·无人机·知识图谱·旅游