机器学习(六) — 评估模型

Evaluate model

1 test set

  1. split the training set into training set and a test set
  2. the test set is used to evaluate the model

1. linear regression

compute test error

J t e s t ( w ⃗ , b ) = 1 2 m t e s t ∑ i = 1 m t e s t [ ( f ( x t e s t ( i ) ) − y t e s t ( i ) ) 2 ] J_{test}(\vec w, b) = \frac{1}{2m_{test}}\sum_{i=1}^{m_{test}} \left [ (f(x_{test}^{(i)}) - y_{test}^{(i)})^2 \right ] Jtest(w ,b)=2mtest1i=1∑mtest[(f(xtest(i))−ytest(i))2]

2. classification regression

compute test error

J t e s t ( w ⃗ , b ) = − 1 m t e s t ∑ i = 1 m t e s t [ y t e s t ( i ) l o g ( f ( x t e s t ( i ) ) ) + ( 1 − y t e s t ( i ) ) l o g ( 1 − f ( x t e s t ( i ) ) ] J_{test}(\vec w, b) = -\frac{1}{m_{test}}\sum_{i=1}^{m_{test}} \left [ y_{test}^{(i)}log(f(x_{test}^{(i)})) + (1 - y_{test}^{(i)})log(1 - f(x_{test}^{(i)}) \right ] Jtest(w ,b)=−mtest1i=1∑mtest[ytest(i)log(f(xtest(i)))+(1−ytest(i))log(1−f(xtest(i))]

2 cross-validation set

  1. split the training set into training set, cross-validation set and test set
  2. the cross-validation set is used to automatically choose the better model, and the test set is used to evaluate the model that chosed

3 bias and variance

  1. high bias: J t r a i n J_{train} Jtrain and J c v J_{cv} Jcv is both high
  2. high variance: J t r a i n J_{train} Jtrain is low, but J c v J_{cv} Jcv is high
  1. if high bias: get more training set is helpless
  2. if high variance: get more training set is helpful

4 regularization

  1. if λ \lambda λ is too small, it will lead to overfitting(high variance)
  2. if λ \lambda λ is too large, it will lead to underfitting(high bias)

5 method

  1. fix high variance:
    • get more training set
    • try smaller set of features
    • reduce some of the higher-order terms
    • increase λ \lambda λ
  2. fix high bias:
    • get more addtional features
    • add polynomial features
    • decrease λ \lambda λ

6 neural network and bias variance

  1. a bigger network means a more complex model, so it will solve the high bias
  2. more data is helpful to solve high variance
  1. it turns out that a bigger(may be overfitting) and well regularized neural network is better than a small neural network
相关推荐
学习中的数据喵9 分钟前
机器学习之逻辑回归
人工智能·机器学习·逻辑回归
kupeThinkPoem11 分钟前
vscode中continue插件介绍
人工智能
小殊小殊19 分钟前
【论文笔记】Video-RAG:开源视频理解模型也能媲美GPT-4o
人工智能·语音识别·论文笔记
人工智能训练24 分钟前
前端框架选型破局指南:Vue、React、Next.js 从差异到落地全解析
运维·javascript·人工智能·前端框架·vue·react·next.js
IT_陈寒40 分钟前
90%的Python开发者不知道:这5个内置函数让你的代码效率提升300%
前端·人工智能·后端
吴法刚41 分钟前
Gemini cli 源码分析之Chat-ContentGenerator生成式 AI 模型交互
人工智能·microsoft·ai·gemini·ai编码
拾零吖1 小时前
CS336 Lecture_03
人工智能·pytorch·深度学习
斯文~1 小时前
【AI论文速递】RAG-GUI:轻量VLM用SFT/RSF提升GUI性能
人工智能·ai·agent·rag·ai读论文·ai论文速递
Mrliu__1 小时前
Opencv(十五) : 图像梯度处理
人工智能·opencv·计算机视觉