使用pyechart创建折线图

python 复制代码
import json
from pyecharts.charts import Line
from pyecharts import options


# 首先使用文件打开数据
f_us = open('Desktop/python/Project/数据可视化/美国.txt','r',encoding="UTF-8")
f_rb = open('Desktop/python/Project/数据可视化/日本.txt','r',encoding="UTF-8")
f_id = open('Desktop/python/Project/数据可视化/印度.txt','r',encoding="UTF-8")
us_data = f_us.read()
rb_data = f_rb.read()
id_data = f_id.read()


# 定义函数,对数据进项处理,取出文章"trend"中的数据。
def data_update(data):
    # 去掉开头用不到的数据(使用for循环,匹配到第一个{之前的所有字符串,都通过序列切片去掉)
    for x in data:
        if x == '{':
            break
        else:
            # 字符串的切片,返回的是从第二个开始到最后一个的字符串
            data = data[1:]
    # 去掉结尾不用的数据,返回的是从第一个开始到倒数第二个的数据
    data =data[:-2]
    # 字符串转字典,使用json方法
    data = json.loads(data)
    # 取出trend_data 部分
    trend_data = data["data"][0]["trend"]
    return trend_data


# 分别调用函数对数据进项处理。
us_data = data_update(us_data)
rb_data = data_update(rb_data)
id_data = data_update(id_data)

# 取出日期数据,作为x轴
x_data_us = us_data["updateDate"][:314]
x_data_rb = rb_data["updateDate"][:314]
x_data_id = id_data["updateDate"][:314]

# 取出确认数据用作Y轴
y_data_us = us_data["list"][0]["data"][:314]
y_data_rb = rb_data["list"][0]["data"][:314]
y_data_id = id_data["list"][0]["data"][:314]

# 生成图标
line = Line()

# 添加X轴,X轴是公用的,所有添加一个就行。
line.add_xaxis(x_data_id)

# 添加Y轴,分别添加美国的日本的印度的Y轴,最后注明折线图中折线上不显示数字。
line.add_yaxis('美国确诊人数',y_data_us,label_opts=options.LabelOpts(is_show=False))
line.add_yaxis('日本确诊人数',y_data_rb,label_opts=options.LabelOpts(is_show=False))
line.add_yaxis('印度确诊人数',y_data_id,label_opts=options.LabelOpts(is_show=False))

# 使用render方法生成折线图
line.render()
# 设置全局选项

line.set_global_opts(
    # 标题设置
    title_opts=options.TitleOpts(title="2020年美日印确诊人数统计",pos_left="center",pos_bottom="1%")
)

# 文件关闭
f_id.close()
f_rb.close()
f_us.close()

效果演示:

相关推荐
机器学习之心4 分钟前
小波增强型KAN网络 + SHAP可解释性分析(Pytorch实现)
人工智能·pytorch·python·kan网络
JavaEdge在掘金10 分钟前
MySQL 8.0 的隐藏索引:索引管理的利器,还是性能陷阱?
python
站大爷IP22 分钟前
Python办公自动化实战:手把手教你打造智能邮件发送工具
python
chao_78936 分钟前
回溯题解——子集【LeetCode】二进制枚举法
开发语言·数据结构·python·算法·leetcode
zdw1 小时前
fit parse解析佳明.fit 运动数据,模仿zwift数据展示
python
剑桥折刀s1 小时前
Python打卡:Day46
python
巴里巴气2 小时前
Python爬虫图片验证码和滑块验证码识别总结
爬虫·python
sword devil9002 小时前
PYQT实战:智能家居中控
python·智能家居·pyqt
NetX行者2 小时前
FastMCP:用于构建MCP服务器的开源Python框架
服务器·python·开源
超龄超能程序猿2 小时前
(3)机器学习小白入门 YOLOv: 解锁图片分类新技能
python·numpy·pandas·scipy