Graph of Thoughts: Solving Elaborate Problems with Large Language Models

Tags: LLM

Authors: Ales Kubicek, Hubert Niewiadomski, Joanna Gajda, Lukas Gianinazzi, Maciej Besta, Michał Podstawski, Nils Blach, Piotr Nyczyk, Robert Gerstenberger, Tomasz Lehmann, Torsten Hoefler

Created Date: January 11, 2024 9:00 PM

Finished Date: 2024/01/18

Status: Finished

organization: Cledar, ETH Zurich, Warsaw University of Technology

publisher : arXiv

year: 2023

code: https://github.com/spcl/graph-of-thoughts

paper: https://arxiv.org/abs/2308.09687

介绍

本文提出了思维图Graph of Thoughts (GoT),是一个用于提升大语言模型提示能力的框架。与之前工作思维链(CoT)、思维树(ToT)类似,但思维图有将大语言模型产生的信息建模为图结构的能力。

文中的主要贡献如下:

  1. 提出了一种新的方法来增强大语言模型通过网络进行推理的能力。
  2. 设计了用于实现GoT的模块化框架。
  3. 展示了几个GoT的使用案例(排序、摘要关键词计数、集合操作、文档合并),并详细说明如何使用基于图的范式来实现它们。
  4. 评估GoT并展示其相对于现有技术的优势。
  5. 我们提出了一种评估提示策略的新度量标准,即思维体积。

组件

Prompter

将提示送入大语言模型。这个模块主要负责执行具体操作。

Parser

从大语言模型思想中抽取信息。应该就是把所需的信息从大语言模型的输出中提取出来。

Scoring & Validation

评估大语言模型的输出,并打分。可以由大语言模型来做,也可以由人来做。

Controller

根据GRS结构实施特定的策略来选择输出。

框架图

样例

相关推荐
媒体人88812 分钟前
GEO 优化专家孟庆涛:技术破壁者重构 AI 时代搜索逻辑
大数据·人工智能
小菜AI科技24 分钟前
Windsurf 评测:这款 人工智能 IDE 是你需要的颠覆性工具吗?
人工智能
RaymondZhao3427 分钟前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
yzx9910131 小时前
小程序开发APP
开发语言·人工智能·python·yolo
AKAMAI1 小时前
通过自动化本地计算磁盘与块存储卷加密保护数据安全
人工智能·云计算
无规则ai1 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
zskj_zhyl2 小时前
家庭健康能量站:微高压氧舱结合艾灸机器人,智享双重养生SPA
人工智能·科技·安全·机器人
朗迪锋2 小时前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
网安INF2 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
l1t4 小时前
利用DeepSeek辅助WPS电子表格ET格式分析
人工智能·python·wps·插件·duckdb