Graph of Thoughts: Solving Elaborate Problems with Large Language Models

Tags: LLM

Authors: Ales Kubicek, Hubert Niewiadomski, Joanna Gajda, Lukas Gianinazzi, Maciej Besta, Michał Podstawski, Nils Blach, Piotr Nyczyk, Robert Gerstenberger, Tomasz Lehmann, Torsten Hoefler

Created Date: January 11, 2024 9:00 PM

Finished Date: 2024/01/18

Status: Finished

organization: Cledar, ETH Zurich, Warsaw University of Technology

publisher : arXiv

year: 2023

code: https://github.com/spcl/graph-of-thoughts

paper: https://arxiv.org/abs/2308.09687

介绍

本文提出了思维图Graph of Thoughts (GoT),是一个用于提升大语言模型提示能力的框架。与之前工作思维链(CoT)、思维树(ToT)类似,但思维图有将大语言模型产生的信息建模为图结构的能力。

文中的主要贡献如下:

  1. 提出了一种新的方法来增强大语言模型通过网络进行推理的能力。
  2. 设计了用于实现GoT的模块化框架。
  3. 展示了几个GoT的使用案例(排序、摘要关键词计数、集合操作、文档合并),并详细说明如何使用基于图的范式来实现它们。
  4. 评估GoT并展示其相对于现有技术的优势。
  5. 我们提出了一种评估提示策略的新度量标准,即思维体积。

组件

Prompter

将提示送入大语言模型。这个模块主要负责执行具体操作。

Parser

从大语言模型思想中抽取信息。应该就是把所需的信息从大语言模型的输出中提取出来。

Scoring & Validation

评估大语言模型的输出,并打分。可以由大语言模型来做,也可以由人来做。

Controller

根据GRS结构实施特定的策略来选择输出。

框架图

样例

相关推荐
木土雨成小小测试员3 分钟前
Python测试开发之后端一
开发语言·数据库·人工智能·python·django·sqlite
轴测君3 分钟前
卷积神经网络的开端:LeNet−5
人工智能·神经网络·cnn
老周聊架构4 分钟前
构建AI观察者:生成式语义工作区(GSW)深度解析与技术全瞻
人工智能
叫我:松哥8 分钟前
spark+flask的新能源车数据分析与智能推荐系统,融合大数据分析、机器学习和人工智能技术
人工智能·机器学习·信息可视化·数据分析·spark·flask·bootstrap
DN202013 分钟前
性价比高的AI销售机器人企业
人工智能·机器人
咕泡科技17 分钟前
从“贪吃蛇”进化论,看懂机器学习、深度学习与强化学习的区别
人工智能·深度学习·机器学习·咕泡科技·咕泡人工智能
安全二次方security²19 分钟前
CUDA C++编程指南(7.2)——C++语言扩展之变量内存空间指定符
c++·人工智能·nvidia·cuda·内存空间指定符·__shared__·__device__
2501_9481201521 分钟前
深度学习在爬虫图片数据内容识别中的应用
人工智能·爬虫·深度学习
速易达网络22 分钟前
体感-手势识别控制轮播图片播放
人工智能
Pith_23 分钟前
模式识别与机器学习复习笔记(下)
人工智能·笔记·机器学习