精确掌控并发:令牌桶算法在分布式环境下并发流量控制的设计与实现

这是《百图解码支付系统设计与实现》专栏系列文章中的第(17)篇,也是流量控制系列的第(4)篇。点击上方关注,深入了解支付系统的方方面面。

本篇重点讲清楚令牌桶原理,在支付系统的应用场景,以及使用reids实现的核心代码。

1. 前言

在流量控制系列文章中的前三篇,分别介绍了固定时间窗口算法、滑动时间窗口算法、漏桶原理、应用场景和redis核心代码。

我们做个简单回顾:

**固定窗口:**算法简单,对突然流量响应不够灵活。超过流量的会直接拒绝,通常用于限流。

滑动窗口: 算法简单,对突然流量响应比固定窗口灵活。超过流量的会直接拒绝,通常用于限流。

**漏桶算法:**在固定窗口的基础之上,使用队列缓冲流量。提供了稳定的流量输出,适用于对流量平滑性有严格要求的场景。

今天讲的令牌桶算法,其实只需要在滑动窗口的基础之上,使用队列缓冲流量。令牌桶能够允许一定程度的突发性流量,但实现稍为复杂。

2. 令牌桶算法原理

令牌桶算法是一种流量整形和流量控制机制。它的核心思想是以固定速率放入令牌到桶中,每个传入请求需要获取一个令牌才能继续执行。如果桶中无令牌可用,则请求要么等待,要么被拒绝。这种机制允许突发流量的发生,同时通过限制令牌的放入速率控制数据的平均传输率。

  1. 令牌桶:令牌桶本质上是一个存放令牌的容器,其中令牌代表着可以执行某个操作的许可或权利。这个桶以固定的速率往其中放入令牌。
  2. 令牌生成速率:令牌桶算法规定了每秒往令牌桶中添加令牌的速率,通常以令牌/秒(Tokens Per Second,TPS)或类似的单位来表示。
  3. 令牌消耗:当一个请求到来时,它需要获取一个令牌才能继续执行。如果桶中有可用令牌,请求将获得一个令牌,并被允许执行。否则,请求将被阻塞或拒绝。
  4. 限制速率:通过控制令牌生成速率,令牌桶算法限制了请求的速率,确保不会发生过于频繁的请求,从而避免了系统的过载。
  5. 处理突发流量:令牌桶允许短时间内处理突发流量,因为它可以在桶中积累多个令牌,允许一次性处理多个请求,但仍然受到桶的容量限制。
  6. 令牌桶容量:令牌桶还具有一个容量,表示桶中最多可以存放多少个令牌。如果桶已满,新的令牌将被丢弃。

从上面的图中可以看到,实际实现时和漏桶很像。只是漏桶是以固定速率流出,而令牌桶允许一定的突发流量。

3. 支付系统应用场景

在支付系统中,令牌桶算法用于控制交易请求的并发数。比如前面漏桶那一篇中对渠道退款的流量控制。比如漏桶好一点的是平滑性更好。

4. 基于redis实现的令牌桶核心代码实现

又回到redis代码。因为直接把滑动时间窗口算法,再加一个队列就可以了。

参考滑动时间窗口算法中的redis代码实现,使用有序集合(sorted set)来实现了令牌桶算法:

java 复制代码
class TokenBucketHolding {
	private final LinkedBlockingQueue<Data> bucket;
    private int limit;
    private String bizType;

    public LeakyBucketHolding(String bizType, int capacity, int limit) {
        this.bizType = bizType;
        this.bucket = new LinkedBlockingQueue<>(capacity);
        this.limit = limit;
    }

    // 其它代码略
}

@Component
public class TokenBucket {
    @Autowired
    private RedisTemplate<String, Object> redisTemplate;
	private Map<String, LeakyBucketHolding> bucketHoldingMap = new HashMap();
    // 滑动时间窗口大小
    private static final long WINDOW_SIZE_IN_SECONDS = 1000;

    public boolean getToken(String key, String reuqestId, long countLimit) {
		// 使用Redis的多个命令来实现滑动窗口
        redisTemplate.zremrangeByScore(key, 0, currentTimeMillis - WINDOW_SIZE_IN_SECONDS);
        long count = redisTemplate.zcard(key);

        if (countLimit >= count) {
            redisTemplate.zadd(key, currentTimeMillis, reuqestId);
            return true;
        } else {
            return false;
        }
    } 

    // 添加数据到桶中
    public boolean addData(Data data) {
        String key = buildKey(data);
        TokenBucketHolding holding = bucketHoldingMap.get(key);
        if (null == holding) {
			holding = buildHolding(data);
            bucketHoldingMap.put(key, holding);
        }
        return holding.getLinkedBlockingQueue().offer(data);
    }

    public Data getData() {
        for(TokenBucketHolding holding : bucketHoldingMap.values()) {
            if(holding.getBucket().size() == 0) {
                return null;
            }

            // 注意这里的uuid()是生成一个随机不重复的uuid,只是占位使用
            boolean limited = !getToken(holding.getBizType(), uuid(), holding.getLimit());
            if (limited) {
                  return null;
            }
                            
            try {
                return holding.getBucket().poll(10, TimeUnit.MILLISECONDS);
            } catch (InterruptedException e) {
                log.log("Leaking process interrupted");
            }
            return null;
        }
    }
}

每个请求都以其发生的时间戳作为分数(SCORE)存储在集合中。通过移除旧于当前时间窗口的请求来维护滑动窗口。通过检查集合中的元素数量,以确定是否超过了设定的最大请求数。

  • zremrangeByScore 用于移除窗口之外的旧请求。
  • zcard 获取当前窗口内的请求数量。
  • zadd 将新请求添加到集合中。

使用一个队列来缓存数据,可以使用本机内存队列,也可以使用消息中间件,上面示例直接使用了内存队列,下面还有一个redis做为示例。在使用时需要根据实际情况做出技术选型。

java 复制代码
public class RedisQ {
	// 其它代码略
    ... ...
    
	// 添加数据到队列中
    public void addData(Data data) {
        return redisTemplate.rpush(data.getBizType(), data);
    }

    
	// 添加数据到队列中
    public Data getData(String bizType) {
        return redisTemplate.lpop(bizType);
    }

    // 其它代码略
    ... ...
}

退款流量控制实例:RefundServiceImpl

java 复制代码
/**
 * 支付服务示例
 */
public class RefundServiceImpl implements RefudnService {
    @Autowiread
    private TokenBucket tokenBucket;

    @Override
    public RefundOrder refund(RefundRequest request) {
        // 前置业务处理
        ... ...
        
    	Data data = buildData(request);
        tokenBucket.addData(data);
        
        // 其它业务处理
        ... ...
    }

    @PostConstruct
    public void init() {
		new Thread(() -> {
            while (true) {
                Data data = tokenBucket.getData();
                if (null != data) {
                    process(data);
                } else {
                    sleep(10);
                }
            }
        }).start();
    }
}

在代码中可以看到,退款请求来后,只需要往桶里扔就完事。然后等另外的线程按固定速度发出去。

代码中还存在的问题:

  1. 上述代码只是示例,真实的代码还有很多异常处理,比如队列数据丢失,需要重新处理。
  2. 暂时只能用于退款,因为退款的时效要求不高。另外,单机只需要开一个线程就行,因为服务器是分布式部署,多个服务器合并起来仍然是多个线程在并发处理。对退款是足够的。

5. 令牌桶使用注意事项

在实际应用中,要考虑以下几点以确保令牌桶算法的有效性和高效性:

  1. 合理设置参数:令牌生成的速率和桶的容量需要根据实际情况调整,以平衡响应性和限制性。
  2. 系统时间同步:在分布式环境中,确保所有节点的系统时间同步非常重要,以避免时间偏差导致的算法执行错误。
  3. 资源预留:在高并发场景下,令牌桶算法可能导致大量请求被暂时阻塞,需要确保系统有足够的资源来处理这些积压的请求。
  4. 监控与调整:持续监控令牌桶的性能,并根据系统负载情况进行动态调整。

6. 结束语

令牌桶算法提供了一种有效的机制来控制和管理分布式环境下的并发请求。它不仅可以防止系统过载,还能够应对突发的高流量,从而保障支付系统的稳定性和可靠性。

下一篇聊聊分布式消息中间件在流控中的应用。

7.精选

专栏地址 百图解码支付系统设计与实现
《百图解码支付系统设计与实现》专栏介绍
《百图解码支付系统设计与实现》专栏大纲及文章链接汇总(进度更新于2023.1.15)
领域相关(部分)
支付行业黑话:支付系统必知术语一网打尽
跟着图走,学支付:在线支付系统设计的图解教程
图解收单平台:打造商户收款的高效之道
图解结算平台:准确高效给商户结款
图解收银台:支付系统承上启下的关键应用
图解支付引擎:资产流动的枢纽
图解渠道网关:不只是对接渠道的接口(一)

技术专题(部分)
交易流水号的艺术:掌握支付系统的业务ID生成指南
揭密支付安全:为什么你的交易无法被篡改
金融密语:揭秘支付系统的加解密艺术
支付系统日志设计完全指南:构建高效监控和问题排查体系的关键基石
避免重复扣款:分布式支付系统的幂等性原理与实践
支付系统的心脏:简洁而精妙的状态机设计与核心代码实现
精确掌控并发:固定时间窗口算法在分布式环境下并发流量控制的设计与实现
精确掌控并发:滑动时间窗口算法在分布式环境下并发流量控制的设计与实现

相关推荐
躺不平的理查德3 小时前
General Spark Operations(Spark 基础操作)
大数据·分布式·spark
talle20213 小时前
Zeppelin在spark环境导出dataframe
大数据·分布式·spark
渣渣盟3 小时前
大数据开发环境的安装,配置(Hadoop)
大数据·hadoop·分布式
Angindem3 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务
龙仔72512 小时前
离线安装rabbitmq全流程
分布式·rabbitmq·ruby
〆、风神14 小时前
Spring Boot 整合 Lock4j + Redisson 实现分布式锁实战
spring boot·分布式·后端
胡萝卜糊了Ohh15 小时前
kafka
分布式·kafka
桑榆080617 小时前
Spark-Streaming核心编程
大数据·分布式·spark
nbsaas-boot19 小时前
分布式微服务架构,数据库连接池设计策略
分布式·微服务·架构