【机器学习300问】11、多元线性回归模型和一元线性回归有什么不同?

在之前的文章中,我们已经学习了一元线性回归模型,其中最关键的参数是w和b。机器学习的目的就是去得到合适w和b后能准确预测未知数据。但现实世界是复杂的,一个事情的发生绝大多数时候不会是一个原因导致。

因此多元线性回归模型区别与一元线性回归主要的不同就在变量不再是w和b两个,而可以是,,...,,多个变量。特征量变多了,很多之前学过的东西也就变复杂了,下面我来一个个讲解。

一、多元线性回归模型

(1)多维特征

多元线性回归模型在定义上与一元线性回归模型不同,还是拿房价预测为例,我们假设房价预测有如下几个特征量。如图中所示有"房屋面积"、"房间数量"、"楼层数量"、"房屋年限"这四个特征量,在加上b偏置的话,一共是五个元。

(2)向量化表示

多元线性回归模型在表示上与一元线性回归模型不同 ,上面提到的四个特征量,可以写成(,,,),这明显是一个向量呀,所以可以用来表示。这些特征量对应的权重也可以同样方式写成。于是我们得到了多元线性回归模型的公式:

|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 模型 | 公式 |
| 一元线性回归 | |
| 多元线性回归 | |
| 多元线性回归向量表示 | |

其中的n是指特征量的个数。向量化后,一方面看上去简洁,另一方面通过使用numpy库,可以进行快速的矩阵运算

二、多元线性回归的梯度下降算法

多元线性回归模型在梯度下降处理上与一元线性回归模型不同,在某一点处维多变多了,梯度就变成这一点的所有偏导组成的向量,因此对于MSE均方误差函数而言每一个w都要求一次偏导。

特征量 时,梯度下降算法就变成了,一次梯度更新就要

共更新n个w的加上更新b

相关推荐
忙碌54423 分钟前
AI大模型时代下的全栈技术架构:从深度学习到云原生部署实战
人工智能·深度学习·架构
LZ_Keep_Running25 分钟前
智能变电巡检:AI检测新突破
人工智能
InfiSight智睿视界1 小时前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔2 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起2 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰2 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
boonya3 小时前
ChatBox AI 中配置阿里云百炼模型实现聊天对话
人工智能·阿里云·云计算·chatboxai
8K超高清3 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
老夫的码又出BUG了3 小时前
预测式AI与生成式AI
人工智能·科技·ai
AKAMAI3 小时前
AI 边缘计算:决胜未来
人工智能·云计算·边缘计算