机器学习--jupyter使用

机器学习--jupyter notebook的使用

Jupyter项目是一个非盈利的开源项目,源于2014年的ipython项目,因为它逐渐发展为支持跨所有编程语言的交互式数据科学和科学计算

Jupyter Notebook,原名IPython Notbook,是IPython的加强网页版,一个开源Web应用程序

名字源自Julia、Python 和 R(数据科学的三种开源语言)

是一款程序员和科学工作者的编程文档笔记展示软件

.ipynb 文件格式是用于计算型叙述的JSON文档格式的正式规范

  • 传统软件开发:工程/目标明确
    • 需求分析,设计架构,开发模块,测试
  • 数据挖掘:艺术/目标不明确
    • 目的是具体的洞察目标,而不是机械的完成任务
    • 通过执行代码来理解问题
    • 迭代式地改进代码来改进解决方法

实时运行的代码、叙事性的文本和可视化被整合在一起,方便使用代码和数据来讲述故事

相关库和jupyter的安装

看这个:Python虚拟环境的搭建 - chjxbt - 博客园 (cnblogs.com)搭建好python的虚拟环境。

逐行在命令行输入

shell 复制代码
mkvirtualenv ai
shell 复制代码
pip install matplotlib
pip install numpy
pip install pandas
pip install tables
pip install jupyter

jupyter 启动!

环境搭建好后,本机输入jupyter notebook命令,会自动弹出浏览器窗口打开Jupyter Notebook

shell 复制代码
# 进入虚拟环境
workon ai
# 输入命令
jupyter notebook

一些基本操作

  • 命令模式:按ESC进入

    • Y ,cell切换到Code模式
    • M ,cell切换到Markdown模式
    • A ,在当前cell的上面添加cell
    • B ,在当前cell的下面添加cell
  • 两种模式通用快捷键

    • Shift+Enter ,执行本单元代码,并跳转到下一单元
    • Ctrl+Enter ,执行本单元代码,留在本单元

同时,其他小工具请安装jupyter_contrib_nbextensions库

安装该库的命令如下:

shell 复制代码
python -m pip install jupyter_contrib_nbextensions

然后执行:

shell 复制代码
jupyter contrib nbextension install --user --skip-running-check

在原来的基础上勾选: "Table of Contents" 以及 "Hinterland"

相关推荐
xixixi777776 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔6 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)6 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家6 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata7 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub7 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索
newBorn_19917 小时前
ops-transformer RoPE位置编码 复数旋转硬件加速实战
人工智能·深度学习·transformer·cann
宁远x7 小时前
Flash Attention原理介绍与使用方法
人工智能·深度学习·机器学习
宁雨桥7 小时前
打造你的专属AI技能包:如何高效使用和自定义 Skills
人工智能·ai编程·skills