机器学习--jupyter使用

机器学习--jupyter notebook的使用

Jupyter项目是一个非盈利的开源项目,源于2014年的ipython项目,因为它逐渐发展为支持跨所有编程语言的交互式数据科学和科学计算

Jupyter Notebook,原名IPython Notbook,是IPython的加强网页版,一个开源Web应用程序

名字源自Julia、Python 和 R(数据科学的三种开源语言)

是一款程序员和科学工作者的编程文档笔记展示软件

.ipynb 文件格式是用于计算型叙述的JSON文档格式的正式规范

  • 传统软件开发:工程/目标明确
    • 需求分析,设计架构,开发模块,测试
  • 数据挖掘:艺术/目标不明确
    • 目的是具体的洞察目标,而不是机械的完成任务
    • 通过执行代码来理解问题
    • 迭代式地改进代码来改进解决方法

实时运行的代码、叙事性的文本和可视化被整合在一起,方便使用代码和数据来讲述故事

相关库和jupyter的安装

看这个:Python虚拟环境的搭建 - chjxbt - 博客园 (cnblogs.com)搭建好python的虚拟环境。

逐行在命令行输入

shell 复制代码
mkvirtualenv ai
shell 复制代码
pip install matplotlib
pip install numpy
pip install pandas
pip install tables
pip install jupyter

jupyter 启动!

环境搭建好后,本机输入jupyter notebook命令,会自动弹出浏览器窗口打开Jupyter Notebook

shell 复制代码
# 进入虚拟环境
workon ai
# 输入命令
jupyter notebook

一些基本操作

  • 命令模式:按ESC进入

    • Y ,cell切换到Code模式
    • M ,cell切换到Markdown模式
    • A ,在当前cell的上面添加cell
    • B ,在当前cell的下面添加cell
  • 两种模式通用快捷键

    • Shift+Enter ,执行本单元代码,并跳转到下一单元
    • Ctrl+Enter ,执行本单元代码,留在本单元

同时,其他小工具请安装jupyter_contrib_nbextensions库

安装该库的命令如下:

shell 复制代码
python -m pip install jupyter_contrib_nbextensions

然后执行:

shell 复制代码
jupyter contrib nbextension install --user --skip-running-check

在原来的基础上勾选: "Table of Contents" 以及 "Hinterland"

相关推荐
JQLvopkk6 分钟前
能用C#开发AI
开发语言·人工智能·c#
郝学胜-神的一滴1 小时前
当AI遇见架构:Vibe Coding时代的设计模式复兴
开发语言·数据结构·人工智能·算法·设计模式·架构
Clarence Liu7 小时前
用大白话讲解人工智能(4) Softmax回归:AI如何给选项“打分排序“
人工智能·数据挖掘·回归
教男朋友学大模型7 小时前
Agent效果该怎么评估?
大数据·人工智能·经验分享·面试·求职招聘
hit56实验室7 小时前
AI4Science开源汇总
人工智能
CeshirenTester7 小时前
9B 上端侧:多模态实时对话,难点其实在“流”
开发语言·人工智能·python·prompt·测试用例
relis8 小时前
Tiny-GPU 仿真与静态分析完整指南:Pyslang + Cocotb 实战
人工智能
njsgcs8 小时前
agentscope怎么在对话的时候调用记忆的
人工智能
泯泷8 小时前
提示工程的悖论:为什么与 AI 对话比你想象的更难
人工智能·后端·openai
逻极8 小时前
BMAD之落地实施:像CTO一样指挥AI编码 (Phase 4_ Implementation)——必学!BMAD 方法论架构从入门到精通
人工智能·ai·系统架构·ai编程·ai辅助编程·bmad·ai驱动敏捷开发