机器学习--jupyter使用

机器学习--jupyter notebook的使用

Jupyter项目是一个非盈利的开源项目,源于2014年的ipython项目,因为它逐渐发展为支持跨所有编程语言的交互式数据科学和科学计算

Jupyter Notebook,原名IPython Notbook,是IPython的加强网页版,一个开源Web应用程序

名字源自Julia、Python 和 R(数据科学的三种开源语言)

是一款程序员和科学工作者的编程文档笔记展示软件

.ipynb 文件格式是用于计算型叙述的JSON文档格式的正式规范

  • 传统软件开发:工程/目标明确
    • 需求分析,设计架构,开发模块,测试
  • 数据挖掘:艺术/目标不明确
    • 目的是具体的洞察目标,而不是机械的完成任务
    • 通过执行代码来理解问题
    • 迭代式地改进代码来改进解决方法

实时运行的代码、叙事性的文本和可视化被整合在一起,方便使用代码和数据来讲述故事

相关库和jupyter的安装

看这个:Python虚拟环境的搭建 - chjxbt - 博客园 (cnblogs.com)搭建好python的虚拟环境。

逐行在命令行输入

shell 复制代码
mkvirtualenv ai
shell 复制代码
pip install matplotlib
pip install numpy
pip install pandas
pip install tables
pip install jupyter

jupyter 启动!

环境搭建好后,本机输入jupyter notebook命令,会自动弹出浏览器窗口打开Jupyter Notebook

shell 复制代码
# 进入虚拟环境
workon ai
# 输入命令
jupyter notebook

一些基本操作

  • 命令模式:按ESC进入

    • Y ,cell切换到Code模式
    • M ,cell切换到Markdown模式
    • A ,在当前cell的上面添加cell
    • B ,在当前cell的下面添加cell
  • 两种模式通用快捷键

    • Shift+Enter ,执行本单元代码,并跳转到下一单元
    • Ctrl+Enter ,执行本单元代码,留在本单元

同时,其他小工具请安装jupyter_contrib_nbextensions库

安装该库的命令如下:

shell 复制代码
python -m pip install jupyter_contrib_nbextensions

然后执行:

shell 复制代码
jupyter contrib nbextension install --user --skip-running-check

在原来的基础上勾选: "Table of Contents" 以及 "Hinterland"

相关推荐
十二AI编程37 分钟前
Anthropic 封杀 OpenCode,OpenAI 闪电接盘:AI 编程生态的 48 小时闪电战
人工智能·chatgpt
CCC:CarCrazeCurator1 小时前
从 APA 到 AVP:汽车自动泊车系统技术演进与产业发展深度研究
人工智能
OpenMiniServer2 小时前
当 AI 成为 Git 里的一个“人”
人工智能·git
bryant_meng2 小时前
【DLNR】《High-frequency Stereo Matching Network》
人工智能·深度学习·计算机视觉·stereo matching·dlnr
梦雨羊2 小时前
Base-NLP学习
人工智能·学习·自然语言处理
丝斯20112 小时前
AI学习笔记整理(42)——NLP之大规模预训练模型Transformer
人工智能·笔记·学习
实战项目2 小时前
大语言模型幻觉抑制方法的研究与实现
人工智能·语言模型·自然语言处理
zstar-_2 小时前
UAVDT数据集疑似用AI进行标注
人工智能
过期的秋刀鱼!2 小时前
机器学习-逻辑回归的成本函数的补充-推导
人工智能·机器学习·逻辑回归