python使用贪心算法解决作业调度问题

对于作业调度问题,其实至今都还不能找到一个最优的解决方案,对与如何将任务和机器进行一个合理安排和分配,让其能够在最短时间内将所有任务全部完成,和计算机操作系统的任务调度过程相类似。

这里主要是给定n个作业和m台相同的机器,使用这些机器来对给定的作业进行处理,则作业k所需要的处理时间是time[k],任一作业可以在任意的一台机器上进行处理,但是在未完成正在完成的作业之前不允许中断当前作业操作,同时任何作业都不可以进行拆分,这里需要给出一种作业调度的方案,使得对这n个作业进行操作,在尽可能短的时间内由这m台机器加工处理完成。

如下例子:

添加图片注释,不超过 140 字(可选)

添加图片注释,不超过 140 字(可选)

对如上的两个例子进行最短时间求解,考虑使用贪心算法得出一个较好的近似最优解。如果说将用时最短的任务优先分配给机器,可能会出现其他任务均已经完成,最终就剩下的是用时最长的任务,也就剩下它还处在正在运行中的情况,以第一个例子为例,如果将耗时为10,26,30这三个任务优先分配给3台机器,此时的最终总耗时为45,这样就可以看出当3个作业都已经完成的时候,耗时最长的作业35却仍在运行,这样就导致了时间的加长和浪费,所以就需要考虑对贪心算法的策略进行调整,就需要优先考虑将耗时最长的作业进行分配。

添加图片注释,不超过 140 字(可选)

优先将耗时最长的作业进行分配如下图所示:

添加图片注释,不超过 140 字(可选)

这个时候的最终的耗时为36,相比于上一种策略的使用耗时大大降低了时间成本,而对于这种贪心算法的策略之所以会生效,主要是因为优先分配耗时最长的作业的时候,在这个作业的运行过程当中,其他耗时相比较短的作业也可以同时进行运行,这样也就体现除了一种并行的策略,实现了各机器的并行,节约时间。

使用python实现的代码如下:

复制代码
def work(time,m):
    tmp=[0 for _ in range(m)]
    if len(time)<=m:
        return max(time)
    else:
        time.sort(reverse=True)
        tmp[0:m]=time[0:m]
        for t in time[m:]:
            min_=tmp.index(min(tmp))
            tmp[min_]+=t
    return max(tmp)
相关推荐
小猪咪piggy17 小时前
【算法】day8 二分查找+前缀和
算法
Word码17 小时前
[排序算法]希尔排序
c语言·数据结构·算法·排序算法
前端小刘哥17 小时前
解析视频直播点播平台EasyDSS在视频点播领域的技术架构与性能优势
算法
QT 小鲜肉17 小时前
【数据结构与算法基础】05. 栈详解(C++ 实战)
开发语言·数据结构·c++·笔记·学习·算法·学习方法
lingran__17 小时前
算法沉淀第七天(AtCoder Beginner Contest 428 和 小训练赛)
c++·算法
前端小刘哥17 小时前
新版视频直播点播平台EasyDSS,打通远程教研与教师培训新通路
算法
2401_8401052017 小时前
P1049 装箱问题 题解(四种方法)附DP和DFS的对比
c++·算法·深度优先·动态规划
kobe_t18 小时前
数据安全系列7:常用的非对称算法浅析
算法
靠近彗星18 小时前
3.4特殊矩阵的压缩存储
数据结构·人工智能·算法
清辞85318 小时前
C++入门(底层知识C与C++的不同)
开发语言·c++·算法