python使用贪心算法解决作业调度问题

对于作业调度问题,其实至今都还不能找到一个最优的解决方案,对与如何将任务和机器进行一个合理安排和分配,让其能够在最短时间内将所有任务全部完成,和计算机操作系统的任务调度过程相类似。

这里主要是给定n个作业和m台相同的机器,使用这些机器来对给定的作业进行处理,则作业k所需要的处理时间是time[k],任一作业可以在任意的一台机器上进行处理,但是在未完成正在完成的作业之前不允许中断当前作业操作,同时任何作业都不可以进行拆分,这里需要给出一种作业调度的方案,使得对这n个作业进行操作,在尽可能短的时间内由这m台机器加工处理完成。

如下例子:

添加图片注释,不超过 140 字(可选)

添加图片注释,不超过 140 字(可选)

对如上的两个例子进行最短时间求解,考虑使用贪心算法得出一个较好的近似最优解。如果说将用时最短的任务优先分配给机器,可能会出现其他任务均已经完成,最终就剩下的是用时最长的任务,也就剩下它还处在正在运行中的情况,以第一个例子为例,如果将耗时为10,26,30这三个任务优先分配给3台机器,此时的最终总耗时为45,这样就可以看出当3个作业都已经完成的时候,耗时最长的作业35却仍在运行,这样就导致了时间的加长和浪费,所以就需要考虑对贪心算法的策略进行调整,就需要优先考虑将耗时最长的作业进行分配。

添加图片注释,不超过 140 字(可选)

优先将耗时最长的作业进行分配如下图所示:

添加图片注释,不超过 140 字(可选)

这个时候的最终的耗时为36,相比于上一种策略的使用耗时大大降低了时间成本,而对于这种贪心算法的策略之所以会生效,主要是因为优先分配耗时最长的作业的时候,在这个作业的运行过程当中,其他耗时相比较短的作业也可以同时进行运行,这样也就体现除了一种并行的策略,实现了各机器的并行,节约时间。

使用python实现的代码如下:

复制代码
def work(time,m):
    tmp=[0 for _ in range(m)]
    if len(time)<=m:
        return max(time)
    else:
        time.sort(reverse=True)
        tmp[0:m]=time[0:m]
        for t in time[m:]:
            min_=tmp.index(min(tmp))
            tmp[min_]+=t
    return max(tmp)
相关推荐
凌肖战2 小时前
力扣网编程55题:跳跃游戏之逆向思维
算法·leetcode
88号技师3 小时前
2025年6月一区-田忌赛马优化算法Tianji’s horse racing optimization-附Matlab免费代码
开发语言·算法·matlab·优化算法
ゞ 正在缓冲99%…4 小时前
leetcode918.环形子数组的最大和
数据结构·算法·leetcode·动态规划
Kaltistss5 小时前
98.验证二叉搜索树
算法·leetcode·职场和发展
知己如祭5 小时前
图论基础(DFS、BFS、拓扑排序)
算法
mit6.8245 小时前
[Cyclone] 哈希算法 | SIMD优化哈希计算 | 大数运算 (Int类)
算法·哈希算法
c++bug5 小时前
动态规划VS记忆化搜索(2)
算法·动态规划
哪 吒5 小时前
2025B卷 - 华为OD机试七日集训第5期 - 按算法分类,由易到难,循序渐进,玩转OD(Python/JS/C/C++)
python·算法·华为od·华为od机试·2025b卷
军训猫猫头6 小时前
1.如何对多个控件进行高效的绑定 C#例子 WPF例子
开发语言·算法·c#·.net
success6 小时前
【爆刷力扣-数组】二分查找 及 衍生题型
算法