LLM:Scaling Laws for Neural Language Models (中)

核心结论

1:LLM模型的性能主要与计算量C,模型参数量N和数据大小D三者相关,而与模型的具体结构 (层数/深度/宽度) 基本无关。三者满足: C ≈ 6ND

  1. 为了提升模型性能,模型参数量N和数据大小D需要同步放大,但模型和数据分别放大的比例还存在争议。(参见下篇文章)

首先看一下核心结论1是怎么推导得到的。

针对transformer结构:Parameters 参数量(不含embedding层)为N,每个Token前向传播消耗运算量C 约为 2N,反向传播的运算量又是前向传播运算量的两倍,所以每个Token需要花费的运算量C 约为 2N + 2*(2N) = 6N。现在Token的数量为D,所以总的运算量为C = 6N*D。

**核心公式:**本部分来自参考2.

  • 第一项是指无法通过增加模型规模来减少的损失,可以认为是数据自身的熵(例如数据中的噪音)
  • 第二项是指能通过增加计算量来减少的损失,可以认为是模型拟合的分布与实际分布之间的差。

根据公式,增大 (例如计算量C),模型整体loss下降,模型性能提升;伴随 (例如计算量C) 趋向于无穷大,模型能拟合数据的真实分布,让第二项逼近0,整体趋向于

结论验证

从图上可以看出:

1:当模型的参数量 N 为时(图中紫色的线),在 Token 数量达到 后(图中红色的圈),模型基本收敛,继续增加训练的 Token 数量,纵轴的Test Loss 并没有明显下降。

2:如果此时,增加模型的参数量N:->。 纵轴的Test Loss:从6.x->3.x。可以看出:提升模型参数量带来的收益更大。

思考一个问题:基于上图,当模型的参数量 N 为(图中紫色的线)

(1)模型达到收敛状态时需要消耗的算力C是多少?

(2)模型达到收敛状态时的耗时是多久呢?

先看答案:下图红色箭头指向位置,也就是图中紫色线的拐点。

1:算力消耗:

2:耗时:

如果没做实验,怎么知道上面的答案呢?

根据核心公式1,得到:

Tips:

PF-days: 如果每秒钟可进行1015次运算,就是1 peta flops,那么一天的运算就是1015×24×3600=8.64×1019,这个算力消耗被称为1个petaflop/s-day。

再看个例子:

下图是Baichuan-2技术报告中的Scaling Law曲线。基于10M到3B的模型在1T 数据上训练的性能,可预测出最后7B模型和13B模型在2.6T数据上的性能。

**问题1:**在1T的数据上,训练的10M-3B的模型,是怎么推算训练7B/13B需要2.6T数据呢?

2.38T 是理论数值,与 2.6T基本一致了。

**问题2:**7B/13B模型的理论损失是多少呢?

将10M->3B不同尺寸的模型,训练到收敛状态,即上图,将每个模型的loss拐点记录进行拟合,得到幂函数(上图中蓝色粗线-scaling law),将C = 带入拟合函数,就可以得到7B/13B模型的理论预期Loss了。

参考

1:介绍一些Scaling Laws - 知乎

2:解析大模型中的Scaling Law - 知乎

相关推荐
用户691581141651 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141651 小时前
Ascend C的编程模型
人工智能
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
真忒修斯之船2 小时前
大模型分布式训练并行技术(三)流水线并行
面试·llm·aigc
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗3 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书