Python爬虫案例分享

1. 导入所需库:

import requests
from bs4 import BeautifulSoup
  • requests库:这是一个Python HTTP客户端库,用于发送HTTP请求。在这个案例中,我们使用它来向目标网站发送GET请求,获取网页内容。
  • BeautifulSoup库:它是Python的一个解析库,主要用于解析HTML和XML文档。在爬虫项目中,我们经常用它来解析从网页获取的HTML文本,提取我们需要的数据。

2. 发送GET请求:

url = 'https://news.example.com/latest'
response = requests.get(url)

这段代码定义了要爬取的URL,并通过requests.get()函数发送一个GET请求到该URL。返回的response对象包含了服务器对请求的响应,包括状态码、响应头和网页内容等信息。

3. 检查请求是否成功:

if response.status_code == 200:

HTTP状态码200表示请求成功。如果请求失败或者服务器无法正常响应,状态码会是其他值。这里我们只处理成功的情况。

4. 解析HTML并提取数据:

soup = BeautifulSoup(response.text, 'html.parser')
news_titles = soup.find_all('h2')

for title in news_titles:
    print(title.text.strip())

首先,我们调用BeautifulSoup的构造函数,传入response的text属性(即网页内容)进行解析。然后,我们使用find_all()方法查找所有的'h2'标签,通常新闻标题会在这样的大标题标签内。最后,遍历找到的所有'h2'标签,提取并打印出它们的文本内容(title.text),strip()函数用于去除字符串首尾的空白字符。

这就是这个简单Python爬虫的基本原理和流程。实际编写爬虫时,根据不同的网页结构和需要抓取的数据,可能需要使用更复杂的BeautifulSoup选择器或方法来定位和提取信息。

相关推荐
bryant_meng17 分钟前
【python】OpenCV—Image Moments
开发语言·python·opencv·moments·图片矩
KevinRay_42 分钟前
Python超能力:高级技巧让你的代码飞起来
网络·人工智能·python·lambda表达式·列表推导式·python高级技巧
Captain823Jack1 小时前
nlp新词发现——浅析 TF·IDF
人工智能·python·深度学习·神经网络·算法·自然语言处理
资源补给站2 小时前
大恒相机开发(2)—Python软触发调用采集图像
开发语言·python·数码相机
Captain823Jack2 小时前
w04_nlp大模型训练·中文分词
人工智能·python·深度学习·神经网络·算法·自然语言处理·中文分词
PieroPc2 小时前
Python 自动化 打开网站 填表登陆 例子
运维·python·自动化
VinciYan3 小时前
基于Jenkins+Docker的自动化部署实践——整合Git与Python脚本实现远程部署
python·ubuntu·docker·自动化·jenkins·.net·运维开发
测试老哥3 小时前
外包干了两年,技术退步明显。。。。
自动化测试·软件测试·python·功能测试·测试工具·面试·职场和发展
終不似少年遊*3 小时前
美国加州房价数据分析01
人工智能·python·机器学习·数据挖掘·数据分析·回归算法
如若1234 小时前
对文件内的文件名生成目录,方便查阅
java·前端·python