【算法与数据结构】494、LeetCode目标和

文章目录

所有的LeetCode题解索引,可以看这篇文章------【算法和数据结构】LeetCode题解

一、题目

二、解法

思路分析:本题和这道题【算法与数据结构】1049、LeetCode 最后一块石头的重量 II类似,同样可以转换成01背包问题。下面开始论述。假设添加正号的整数子集和为 p o s i t i v e positive positive,添加负号的整数子集和为 n e g a t i v e negative negative。那么我们有 p o s i t i v e − n e g a t i v e = t a r g e t , p o s i t i v e + n e g a t i v e = s u m positive - negative=target, positive + negative = sum positive−negative=target,positive+negative=sum。因此 p o s i t i v e = ( t a r g e t + s u m ) / 2 positive = (target + sum)/2 positive=(target+sum)/2,其中 s u m sum sum代表nums的和。找到了和为 p o s i t i v e positive positive的子集就找到了 n e g a t i v e negative negative。因此,问题变成了寻找和为 p o s i t i v e positive positive的子集数量。寻找和为 p o s i t i v e positive positive的子集是一个01背包问题。其中, p o s i t i v e positive positive是背包的容量,物品及其价值是 n u m s nums nums数组。 d p [ j ] dp[j] dp[j]代表填满 j j j(包括 j j j)这么大容积的包,有 d p [ j ] dp[j] dp[j]种方法。递归公式可以由 d p [ j − n u m s [ i ] ] dp[j-nums[i]] dp[j−nums[i]]得出,例如只要有 n u m s [ i ] nums[i] nums[i],那么弄成 d p [ j ] dp[j] dp[j]的方法就有 d p [ j − n u m s [ i ] ] dp[j-nums[i]] dp[j−nums[i]]中,并且根据 n u m s [ i ] nums[i] nums[i]的不同会有不同的方法,所以 d p [ j ] dp[j] dp[j]应该采取累加的形式。然后 d p [ 0 ] dp[0] dp[0]应该初始化为1(为0的话所有的 d p [ j ] dp[j] dp[j]都是0)。

程序如下:

cpp 复制代码
class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        if ((target + sum) % 2 != 0 || abs(target) > sum) return 0;
        int positive = (target + sum) / 2;
        vector<int> dp(vector<int>(positive + 1, 0));
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {			// 遍历物品
            for (int j = positive; j >= nums[i]; j--) {			// 遍历背包容量
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[positive];
    }
};

复杂度分析:

  • 时间复杂度: O ( m ∗ n ) O(m*n) O(m∗n), n为nums数组大小,m为背包容量。
  • 空间复杂度: O ( m ) O(m) O(m)。

三、完整代码

cpp 复制代码
# include <iostream>
# include <vector>
# include <numeric>
using namespace std;

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        if ((target + sum) % 2 != 0 || abs(target) > sum) return 0;
        int positive = (target + sum) / 2;
        vector<int> dp(vector<int>(positive + 1, 0));
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {			// 遍历物品
            for (int j = positive; j >= nums[i]; j--) {			// 遍历背包容量
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[positive];
    }
};

int main() {
    Solution s1;
    vector<int> nums = { 1,1,1,1,1 };
    int target = 3;
    int result = s1.findTargetSumWays(nums, target);
    cout << result << endl;
    system("pause");
    return 0;
}

end

相关推荐
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
hyshhhh12 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
杉之12 小时前
选择排序笔记
java·算法·排序算法
烂蜻蜓13 小时前
C 语言中的递归:概念、应用与实例解析
c语言·数据结构·算法
OYangxf13 小时前
图论----拓扑排序
算法·图论
我要昵称干什么13 小时前
基于S函数的simulink仿真
人工智能·算法
AndrewHZ13 小时前
【图像处理基石】什么是tone mapping?
图像处理·人工智能·算法·计算机视觉·hdr
念九_ysl13 小时前
基数排序算法解析与TypeScript实现
前端·算法·typescript·排序算法
守正出琦13 小时前
日期类的实现
数据结构·c++·算法
ChoSeitaku13 小时前
NO.63十六届蓝桥杯备战|基础算法-⼆分答案|木材加工|砍树|跳石头(C++)
c++·算法·蓝桥杯