Numpy库:常用函数

NumPy是一个用于Python的库,提供大量的函数和工具,用于处理大型多维数组和矩阵,以及进行相关的数学运算。

常用函数

numpy数组创建

  • numpy.array(): 创建一个数组。
  • numpy.zeros(): 创建一个所有元素都为0的数组。
  • numpy.ones(): 创建一个所有元素都为1的数组。
  • numpy.eye(): 创建一个单位矩阵。
  • numpy.identity(): 创建一个方阵,对角线上的元素为1,其余元素为0。

数组操作

  • numpy.sum(): 求和。
  • numpy.mean(): 计算平均值。
  • numpy.max(): 找出最大值。
  • numpy.min(): 找出最小值。
  • numpy.std(): 计算标准差。
  • numpy.var(): 计算方差。
  • numpy.shape(): 获取数组的形状。
  1. 线性代数

    • numpy.linalg.inv(): 计算矩阵的逆。
    • numpy.linalg.det(): 计算矩阵的行列式。
    • numpy.linalg.eig(): 计算特征值和特征向量。

数学函数

  • numpy.sin(), numpy.cos(), numpy.tan(): 三角函数。
  • numpy.exp(), numpy.log(): 指数和对数函数。
  • numpy.sqrt(): 开平方根。

数组排序和搜索

  • numpy.sort(): 对数组进行排序。
  • numpy.argsort(): 返回排序后的索引。
  • numpy.where(): 返回满足条件的元素的索引。

文件读写

numpy.load(), numpy.save(): 用于读写二进制文件。
7.

随机数生成

  • numpy.random.rand(): 生成0到1之间的随机数。
  • numpy.random.randint(): 生成指定范围内的随机整数。

线性代数操作

  • numpy.dot(): 点乘(矩阵乘法)。
  • numpy.cross(): 叉乘(向量乘法)。
  1. 广播

    广播是一种强大的机制,允许在执行算术运算时对不同形状的数组进行操作。例如,你可以将一个形状为(3,)的一维数组与一个形状为(3,3)的二维数组进行算术运算,而不需要改变任何数组的形状或大小。这种机制在NumPy中非常常见,并允许你以简洁、高效的方式处理复杂的数学运算。

示例

python 复制代码
# 导入NumPy库
import numpy as np

# 创建一个数组
arr = np.array([1, 2, 3, 4, 5])
print(arr)

# 创建一个所有元素都为0的数组
zeros_arr = np.zeros(5)
print(zeros_arr)

# 创建一个所有元素都为1的数组
ones_arr = np.ones(5)
print(ones_arr)

# 创建一个单位矩阵
eye_arr = np.eye(3)
print(eye_arr)

# 创建一个方阵,对角线上的元素为1,其余元素为0
identity_arr = np.identity(3)
print(identity_arr)

# 求和
sum_arr = np.sum(arr)
print(sum_arr)

# 计算平均值
mean_arr = np.mean(arr)
print(mean_arr)

# 找出最大值
max_arr = np.max(arr)
print(max_arr)

# 找出最小值
min_arr = np.min(arr)
print(min_arr)

# 计算标准差
std_arr = np.std(arr)
print(std_arr)

# 计算方差
var_arr = np.var(arr)
print(var_arr)

# 获取数组的形状
shape_arr = np.shape(arr)
print(shape_arr)

# 计算矩阵的逆
inv_arr = np.linalg.inv(eye_arr)
print(inv_arr)

# 计算矩阵的行列式
det_arr = np.linalg.det(eye_arr)
print(det_arr)

# 计算特征值和特征向量
eig_arr = np.linalg.eig(eye_arr)
print(eig_arr)

# 三角函数
sin_arr = np.sin(arr)
print(sin_arr)

cos_arr = np.cos(arr)
print(cos_arr)

tan_arr = np.tan(arr)
print(tan_arr)

# 指数和对数函数
exp_arr = np.exp(arr)
print(exp_arr)

log_arr = np.log(arr)
print(log_arr)

# 开平方根
sqrt_arr = np.sqrt(arr)
print(sqrt_arr)

# 对数组进行排序
sort_arr = np.sort(arr)
print(sort_arr)

# 返回排序后的索引
argsort_arr = np.argsort(arr)
print(argsort_arr)

# 返回满足条件的元素的索引
where_arr = np.where(arr > 2)
print(where_arr)

# 读写二进制文件
np.save('data.npy', arr)
loaded_arr = np.load('data.npy')
print(loaded_arr)

# 生成0到1之间的随机数
rand_arr = np.random.rand(5)
print(rand_arr)

# 生成指定范围内的随机整数
randint_arr = np.random.randint(1, 10, size=5)
print(randint_arr)

# 点乘(矩阵乘法)
dot_arr = np.dot(eye_arr, eye_arr)
print(dot_arr)

# 叉乘(向量乘法)
cross_arr = np.cross(eye_arr, eye_arr)
print(cross_arr)

# 广播(Broadcasting)
broadcast_arr = np.add(eye_arr, ones_arr)
print(broadcast_arr)
相关推荐
小雷FansUnion1 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周1 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享2 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜2 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿2 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_2 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1233 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷3 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手3 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野3 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能