Spark写入kafka(批数据和流式)

Spark写入(批数据和流式处理)

Spark写入kafka批处理

写入kafka基础

复制代码
# spark写入数据到kafka
from pyspark.sql import SparkSession,functions as F

ss = SparkSession.builder.getOrCreate()

# 创建df数据
df = ss.createDataFrame([[9, '王五', 21, '男'], [10, '大乔', 20, '女'], [11, '小乔', 22, '女']],
                        schema='id int,name string,age int,gender string')

df.show()
# todo 注意一:需要拼接一个value
# 在写入kafka时需要拼接一个value
df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'))
df_kafka.show()

# 将df写入kafka
# todo 注意二:这个和读取kafka时的配置是一样,不过这里应该是没有读取起始量和读取结束量
options = {
    # 指定kafka的连接的broker服务节点信息
    'kafka.bootstrap.servers': 'node1:9092',
    # 指定写入主题
    'topic': 'user'
}
df_kafka.write.save(format='kafka', mode='append', **options)

kafka写入策略

复制代码
# kafka数据写入策略
from pyspark.sql import SparkSession,functions as F

ss = SparkSession.builder.getOrCreate()


# 创建df数据
df = ss.createDataFrame([[200, '王五22222', 21, '男'], [201, '大乔22222', 20, '女'], [202, '小乔2222', 22, '女']],
                        schema='id int,name string,age int,gender string')

df.show()

# 在写入kakfa时需要拼接一个value
# # df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'),F.lit(1).alias('partition'))
# # df_kafka.show()

# 指定分区 增加一个分区字段
options = {
    # 指定kafka的连接的broker服务节点信息
    'kafka.bootstrap.servers': 'node1:9092',
    # 指定写入主题
    'topic': 'user',
}
# df_kafka.write.save(format='kafka', mode='append', **options)



# 指定key  会key进行hash计算,相同key的数据会写入同一分区
# hash(key)%分区数  =
# df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'),df.gender.alias('key'))
# df_kafka.show()

# 同时指定key和partition  按照分区写入
df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'),df.gender.alias('key'),F.lit(2).alias('partition'))
df_kafka.show()

df_kafka.write.save(format='kafka', mode='append', **options)

写入kafka应答响应级别

复制代码
# spark写入数据到kafka
# 指定ack应答级别
from pyspark.sql import SparkSession, functions as F

ss = SparkSession.builder.getOrCreate()

# 创建df数据
df = ss.createDataFrame([[9, '王五', 21, '男'], [10, '大乔', 20, '女'], [11, '小乔', 22, '女']],
                        schema='id int,name string,age int,gender string')

df.show()

# 在写入kakfa时需要拼接一个value
df_kafka = df.select(F.concat_ws(',', df.id.cast('string'), df.name, df.age.cast('string'), df.gender).alias('value'))
df_kafka.show()

# 将df写入kafka
options = {
    # 指定kafka的连接的broker服务节点信息
    'kafka.bootstrap.servers': 'node1:9092',
    # 指定写入主题
    'topic': 'user',
    # 指定级别
    'acks':'all'
}
df_kafka.write.save(format='kafka', mode='append', **options)

Sprak写入kafka流式处理

相关推荐
Lansonli1 小时前
大数据Spark(八十):Action行动算子fold和aggregate使用案例
大数据·分布式·spark
闻哥1 小时前
Kafka高吞吐量核心揭秘:四大技术架构深度解析
java·jvm·面试·kafka·rabbitmq·springboot
indexsunny14 小时前
互联网大厂Java面试实战:Spring Boot微服务在电商场景中的应用与挑战
java·spring boot·redis·微服务·kafka·spring security·电商
TTBIGDATA15 小时前
【Atlas】Ambari 中 开启 Kerberos + Ranger 后 Atlas Hook 无权限访问 Kafka Topic:ATLAS_HOOK
大数据·kafka·ambari·linq·ranger·knox·bigtop
岁岁种桃花儿18 小时前
Kafka从入门到上天系列第一篇:kafka的安装和启动
大数据·中间件·kafka
鸿乃江边鸟1 天前
Spark Datafusion Comet 向量化Rust Native--CometShuffleExchangeExec怎么控制读写
大数据·rust·spark·native
驾数者1 天前
Flink SQL实时数仓实战:基于Flink SQL的完整项目案例
sql·flink·linq
TTBIGDATA2 天前
【Atlas】Atlas Hook 消费 Kafka 报错:GroupAuthorizationException
hadoop·分布式·kafka·ambari·hdp·linq·ranger
伟大的大威2 天前
NVIDIA DGX Spark (ARM64/Blackwell) Kubernetes 集群 + GPU Operator 完整部署指南
大数据·spark·kubernetes
indexsunny2 天前
互联网大厂Java面试实战:微服务与Spring生态技术解析
java·spring boot·redis·kafka·mybatis·hibernate·microservices