Spark写入kafka(批数据和流式)

Spark写入(批数据和流式处理)

Spark写入kafka批处理

写入kafka基础

复制代码
# spark写入数据到kafka
from pyspark.sql import SparkSession,functions as F

ss = SparkSession.builder.getOrCreate()

# 创建df数据
df = ss.createDataFrame([[9, '王五', 21, '男'], [10, '大乔', 20, '女'], [11, '小乔', 22, '女']],
                        schema='id int,name string,age int,gender string')

df.show()
# todo 注意一:需要拼接一个value
# 在写入kafka时需要拼接一个value
df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'))
df_kafka.show()

# 将df写入kafka
# todo 注意二:这个和读取kafka时的配置是一样,不过这里应该是没有读取起始量和读取结束量
options = {
    # 指定kafka的连接的broker服务节点信息
    'kafka.bootstrap.servers': 'node1:9092',
    # 指定写入主题
    'topic': 'user'
}
df_kafka.write.save(format='kafka', mode='append', **options)

kafka写入策略

复制代码
# kafka数据写入策略
from pyspark.sql import SparkSession,functions as F

ss = SparkSession.builder.getOrCreate()


# 创建df数据
df = ss.createDataFrame([[200, '王五22222', 21, '男'], [201, '大乔22222', 20, '女'], [202, '小乔2222', 22, '女']],
                        schema='id int,name string,age int,gender string')

df.show()

# 在写入kakfa时需要拼接一个value
# # df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'),F.lit(1).alias('partition'))
# # df_kafka.show()

# 指定分区 增加一个分区字段
options = {
    # 指定kafka的连接的broker服务节点信息
    'kafka.bootstrap.servers': 'node1:9092',
    # 指定写入主题
    'topic': 'user',
}
# df_kafka.write.save(format='kafka', mode='append', **options)



# 指定key  会key进行hash计算,相同key的数据会写入同一分区
# hash(key)%分区数  =
# df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'),df.gender.alias('key'))
# df_kafka.show()

# 同时指定key和partition  按照分区写入
df_kafka = df.select(F.concat_ws(',',df.id.cast('string'),df.name,df.age.cast('string'),df.gender).alias('value'),df.gender.alias('key'),F.lit(2).alias('partition'))
df_kafka.show()

df_kafka.write.save(format='kafka', mode='append', **options)

写入kafka应答响应级别

复制代码
# spark写入数据到kafka
# 指定ack应答级别
from pyspark.sql import SparkSession, functions as F

ss = SparkSession.builder.getOrCreate()

# 创建df数据
df = ss.createDataFrame([[9, '王五', 21, '男'], [10, '大乔', 20, '女'], [11, '小乔', 22, '女']],
                        schema='id int,name string,age int,gender string')

df.show()

# 在写入kakfa时需要拼接一个value
df_kafka = df.select(F.concat_ws(',', df.id.cast('string'), df.name, df.age.cast('string'), df.gender).alias('value'))
df_kafka.show()

# 将df写入kafka
options = {
    # 指定kafka的连接的broker服务节点信息
    'kafka.bootstrap.servers': 'node1:9092',
    # 指定写入主题
    'topic': 'user',
    # 指定级别
    'acks':'all'
}
df_kafka.write.save(format='kafka', mode='append', **options)

Sprak写入kafka流式处理

相关推荐
lang201509281 小时前
深入解析Kafka Broker核心读写机制
分布式·kafka
lang201509282 小时前
Kafka高水位与日志末端偏移量解析
分布式·kafka
lang201509283 小时前
Kafka副本管理核心:ReplicaManager揭秘
分布式·kafka·linq
beijingliushao5 小时前
103-Spark之Standalone环境测试
大数据·ajax·spark
beijingliushao6 小时前
102-Spark之Standalone环境安装步骤-2
大数据·分布式·spark
Query*8 小时前
分布式消息队列kafka【二】—— 基础概念介绍和快速入门
分布式·kafka
lang201509288 小时前
Kafka日志迁移与查询机制解析
分布式·kafka·linq
lang201509288 小时前
Kafka副本管理核心机制全解析
分布式·kafka·linq
青云交9 小时前
Java 大视界 -- Java 大数据机器学习模型在金融风险管理体系构建与风险防范能力提升中的应用(435)
java·大数据·机器学习·spark·模型可解释性·金融风控·实时风控
lang201509289 小时前
Kafka副本管理核心机制解析
分布式·kafka