[学习笔记]刘知远团队大模型技术与交叉应用L3-Transformer_and_PLMs

RNN存在信息瓶颈的问题。

注意力机制的核心就是在decoder的每一步,都把encoder的所有向量提供给decoder模型。

具体的例子

先获得encoder隐向量的一个注意力分数。

注意力机制的各种变体

一:直接点积

二:中间乘以一个矩阵

三:Additive attention:使用一层前馈神经网络来获得注意力分数

...

Transformer概述

输入层

BPE(Byte Pair Encoding)

BPE提出主要是为了解决OOV的问题:会出现一些在词表中没有出现过的词。

位置编码Positional Encoding

Transformer Block

attention层

不进行scale,则方差会很大。则经过softmax后,有些部分会很尖锐,接近1。

多头注意力机制

Transformer Decoder Block

mask保证了文本生成是顺序生成的。

其他Tricks

Transformer的优缺点

缺点:模型对参数敏感,优化困难;处理文本复杂度是文本长度的平方数量级。

预训练语言模型PLM

预训练语言模型学习到的知识可以非常容易地迁移到下游任务。

word2vec是第一个预训练语言模型。现在绝大多数语言模型都是基于Transformer了,如Bert。

PLMs的两种范式

1.feature提取器:预训练好模型后,feature固定。典型的如word2vec和Elmo

2.对整个模型的参数进行更新

GPT


BERT

不同于GPT,BERT是双向的预训练模型。使用的是基于Mask的数据。

它的最主要的预训练任务是预测mask词。

还有一个是预测下一个句子。


PLMs after BERT

BERT的问题:

尽管BERT采用了一些策略,使mask可能替换成其他词或正确词。但是这并没有解决mask没有出现在下游任务。

预训练效率低。

窗口大小受限。

相关改进工作

RoBERTa指出bert并没有完全训练。它可以被训练得更加鲁棒。

MLM任务的应用

跨语言对齐

跨模态对齐

PLM前沿

GPT3


T5

统一所有NLP任务为seq to seq的形式

MoE

每次模型调用部分子模块来处理。涉及调度,负载均衡。

Transformers教程

介绍

使用Transformers的Pipeline

Tokenization

常用API


相关推荐
AI浩4 小时前
【面试总结】FFN(前馈神经网络)在Transformer模型中先升维再降维的原因
人工智能·深度学习·计算机视觉·transformer
bohu837 小时前
OpenCV笔记3-图像修复
笔记·opencv·图像修复·亮度增强·图片磨皮
大丈夫立于天地间8 小时前
ISIS基础知识
网络·网络协议·学习·智能路由器·信息与通信
doubt。8 小时前
【BUUCTF】[RCTF2015]EasySQL1
网络·数据库·笔记·mysql·安全·web安全
Chambor_mak9 小时前
stm32单片机个人学习笔记14(USART串口数据包)
stm32·单片机·学习
Zelotz9 小时前
线段树与矩阵
笔记
汇能感知9 小时前
光谱相机在智能冰箱的应用原理与优势
经验分享·笔记·科技
PaLu-LI9 小时前
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
c++·人工智能·opencv·学习·ubuntu·计算机视觉
yuanbenshidiaos10 小时前
【大数据】机器学习----------计算机学习理论
大数据·学习·机器学习
汤姆和佩琦10 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn