[学习笔记]刘知远团队大模型技术与交叉应用L3-Transformer_and_PLMs

RNN存在信息瓶颈的问题。

注意力机制的核心就是在decoder的每一步,都把encoder的所有向量提供给decoder模型。

具体的例子

先获得encoder隐向量的一个注意力分数。

注意力机制的各种变体

一:直接点积

二:中间乘以一个矩阵

三:Additive attention:使用一层前馈神经网络来获得注意力分数

...

Transformer概述

输入层

BPE(Byte Pair Encoding)

BPE提出主要是为了解决OOV的问题:会出现一些在词表中没有出现过的词。

位置编码Positional Encoding

Transformer Block

attention层

不进行scale,则方差会很大。则经过softmax后,有些部分会很尖锐,接近1。

多头注意力机制

Transformer Decoder Block

mask保证了文本生成是顺序生成的。

其他Tricks

Transformer的优缺点

缺点:模型对参数敏感,优化困难;处理文本复杂度是文本长度的平方数量级。

预训练语言模型PLM

预训练语言模型学习到的知识可以非常容易地迁移到下游任务。

word2vec是第一个预训练语言模型。现在绝大多数语言模型都是基于Transformer了,如Bert。

PLMs的两种范式

1.feature提取器:预训练好模型后,feature固定。典型的如word2vec和Elmo

2.对整个模型的参数进行更新

GPT


BERT

不同于GPT,BERT是双向的预训练模型。使用的是基于Mask的数据。

它的最主要的预训练任务是预测mask词。

还有一个是预测下一个句子。


PLMs after BERT

BERT的问题:

尽管BERT采用了一些策略,使mask可能替换成其他词或正确词。但是这并没有解决mask没有出现在下游任务。

预训练效率低。

窗口大小受限。

相关改进工作

RoBERTa指出bert并没有完全训练。它可以被训练得更加鲁棒。

MLM任务的应用

跨语言对齐

跨模态对齐

PLM前沿

GPT3


T5

统一所有NLP任务为seq to seq的形式

MoE

每次模型调用部分子模块来处理。涉及调度,负载均衡。

Transformers教程

介绍

使用Transformers的Pipeline

Tokenization

常用API


相关推荐
菩提小狗1 小时前
小迪安全2023-2024|第5天:基础入门-反弹SHELL&不回显带外&正反向连接&防火墙出入站&文件下载_笔记|web安全|渗透测试|
笔记·安全·web安全
Wentao Sun1 小时前
致敬软件创业者2026
笔记·程序人生
ZH15455891312 小时前
Flutter for OpenHarmony Python学习助手实战:GUI桌面应用开发的实现
python·学习·flutter
编程小白20262 小时前
从 C++ 基础到效率翻倍:Qt 开发环境搭建与Windows 神级快捷键指南
开发语言·c++·windows·qt·学习
学历真的很重要2 小时前
【系统架构师】第二章 操作系统知识 - 第二部分:进程与线程(补充版)
学习·职场和发展·系统架构·系统架构师
深蓝海拓2 小时前
PySide6,QCoreApplication::aboutToQuit与QtQore.qAddPostRoutine:退出前后的清理工作
笔记·python·qt·学习·pyqt
酒鼎2 小时前
学习笔记(3)HTML5新特性(第2章)
笔记·学习·html5
L***一3 小时前
2026届大专跨境电商专业毕业生就业能力提升路径探析
学习
.小墨迹3 小时前
apollo学习之借道超车的速度规划
linux·c++·学习·算法·ubuntu
ZH15455891313 小时前
Flutter for OpenHarmony Python学习助手实战:模块与包管理的实现
python·学习·flutter