小红统计区间(hard) - 树状数组 + 离散化

题面

分析

存在负数不满足单调性,因此无法二分或者双指针,对于每一段符合条件的区间 [ l , r ] [l, r] [l,r] 都有 s u m [ r ] − s u m [ l − 1 ] > = k sum[r] - sum[l - 1] >= k sum[r]−sum[l−1]>=k ,也就是 s u m [ l − 1 ] < = s u m [ r ] − k sum[l - 1] <= sum[r] - k sum[l−1]<=sum[r]−k ,那么如果对于所有区间的前缀和来进行顺序存储,那么对于当前前缀和 s u m [ i ] sum[i] sum[i] ,可以去找小于等于 s u m [ i ] − k sum[i] - k sum[i]−k 的符合条件的前缀和有多少,但是前缀和的范围很大,所以就要进行离散化,将所有需要用到的前缀和都进行i离散化重新定下标,然后可以通过树状数组每次对遍历到的前缀和的位置加一,统计可以加上树状数组查询 s u m [ i ] − k sum[i] - k sum[i]−k 的结果,也就是这之前有多少个满足条件的前缀和。

代码
cpp 复制代码
#include <bits/stdc++.h>

using namespace std;
using ll = long long;

const int N = 2e5 + 10;

ll a[N];
int tr[N];
map<ll, int> m;

void add(int u) {
    for(int i = u; i < N; i += (i & -i)) {
        tr[i] ++;
    }
    return ;
}

int query(int x) {
    int ans = 0;
    for(int i = x; i >= 1; i -= i & -i) ans += tr[i];
    return ans;
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    
    int n;
    ll k;
    cin >> n >> k;
    for(int i = 1; i <= n; i ++) {
        cin >> a[i];
        a[i] += a[i - 1];
    }
    m[0] = 1;
    for(int i = 1; i <= n; i ++) {
        m[a[i]] = 1;
        m[a[i] - k] = 1;
    }
    int now = 1;
    for(auto &x: m) {
        x.second = now ++;
    }
    //for(auto j: m) cout <<j.first << ' ' <<  j.second << endl;
    ll ans = 0;
    add(m[0]);
    for(int i = 1; i <= n; i ++) {
        ans += query(m[a[i] - k]);
        add(m[a[i]]);
    }
    cout << ans << "\n";
}
相关推荐
martian6655 分钟前
深入解析C++驱动开发实战:优化高效稳定的驱动应用
开发语言·c++·驱动开发
mit6.82418 分钟前
固定中间
算法
老马啸西风26 分钟前
成熟企业级技术平台 MVE-010-跳板机 / 堡垒机(Jump Server / Bastion Host)
人工智能·深度学习·算法·职场和发展
FMRbpm30 分钟前
用队列实现栈
数据结构·c++·新手入门
立志成为大牛的小牛1 小时前
数据结构——五十九、冒泡排序(王道408)
数据结构·学习·程序人生·考研·算法
s09071361 小时前
下视多波束声呐进行测绘作业注意事项
算法·海洋测绘·下视多波束
wangjialelele1 小时前
git工作原理、个人使用到多人协作开发与git FLOW模型
c语言·c++·git·团队开发·个人开发
papership1 小时前
【入门级-数据结构-3、特殊树:完全二叉树的定义与基本性质】
数据结构·算法
iCxhust1 小时前
__acrtused 是什么
c语言·c++·单片机·嵌入式硬件·微机原理