6 时间序列(不同位置的装置如何建模): GRU+Embedding

很多算法比赛经常会遇到不同的物体产生同含义的时间序列信息,比如不同位置的时间序列信息,风力发电、充电桩用电。经常会遇到该如此场景,对所有数据做统一处理喂给模型,模型很难学到区分信息,因此设计如果对不同位置的装置做嵌入操作,这也是本文书写的主要目的之一,如果对不同位置装置的时序数据做模型呢?

RGU: 循环神经网络模块,经常用于处理时序数据。

Embedding : 是 PyTorch 中的一个类,用于将离散的整数序列映射为连续的向量表示。

使用下面比赛的数据作为一个处理的DEMO:

2023中国华录杯数据湖算法大赛

import package

python 复制代码
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
#import tushare as ts
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.model_selection import train_test_split
from torch.utils.data import TensorDataset
from tqdm import tqdm
from torch.utils.data import Dataset, DataLoader

from sklearn.preprocessing import LabelEncoder

import matplotlib.pyplot as plt
import tqdm
import sys
import os
import gc
import argparse
import warnings
 
warnings.filterwarnings('ignore')

load data

python 复制代码
class Config():
    #data_path = '../data/data1/train/power.csv'
    timestep = 14  # 时间步长,就是利用多少时间窗口
    batch_size = 32  # 批次大小
    feature_size = 1  # 每个步长对应的特征数量,这里只使用1维,每天的风速
    hidden_size = 56  # 隐层大小
    output_size = 1  # 由于是单输出任务,最终输出层大小为1,预测未来1天风速
    num_layers = 1  # lstm的层数
    epochs = 10 # 迭代轮数
    best_loss = 0 # 记录损失
    learning_rate = 0.00003 # 学习率
    model_name = 'lstm' # 模型名称
    save_path = './{}.pth'.format(model_name) # 最优模型保存路径
config = Config()

train_df = pd.read_csv('../初赛数据/phase1_train.csv')
test_df = pd.read_csv('../初赛数据/phase1_test.csv')


labelEncoder = LabelEncoder()
train_df['line_label'] = labelEncoder.fit_transform(train_df['line'])
#labelEncoder.transform(test_df['line'])

train_df = train_df.sort_values(["line",'date']).reset_index(drop=True)

train_df.line.unique()
复制代码
array(['L01', 'L02', 'L03', 'L04', 'L05', 'L06', 'L08', 'L09', 'L10'],
      dtype=object)

使用前面14天预测未来第七天:

1,2,3,4,5,6,7,8,9,10,11,12,13,14 -》14+7

【1,2,3,4,5,6,7,8,9,10,11,12,13,14】+1 -》 14+7+1

。。。。。

python 复制代码
#train_df.head()
his_pow_feats = []
for i in range(config.timestep):
    train_df[f'shift_{7+i}'] = train_df.groupby("line_label")['passenger_flow'].shift(7+i)
    his_pow_feats.append(f'shift_{7+i}')
train_df_drop_na = train_df[train_df[his_pow_feats].isna().sum(axis=1)==0]


class MyDataSet(Dataset):
    def __init__(self,train_df_drop_na,his_pow_feats):
        """
        train_df_drop_na
        """
        self.train_df = train_df_drop_na.reset_index(drop=True)

    def __len__(self):
        return len(self.train_df)
    def __getitem__(self,item):

        label = self.train_df.loc[item,'passenger_flow']
        id_encoder = self.train_df.loc[item,'line_label']
        his_feats_list = self.train_df.loc[item,his_pow_feats].values.tolist()
        
        return {
               "input_ids":torch.tensor(id_encoder,dtype=torch.long),
               "his_feats":torch.as_tensor(his_feats_list ,dtype=torch.float32).unsqueeze(-1),
               "labels":torch.tensor(label,dtype=torch.float32)}


RANDOM_SEED = 1023
df_train, df_test = train_test_split(train_df_drop_na, test_size=0.2, random_state=RANDOM_SEED)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
df_train.shape, df_val.shape, df_test.shape
 
def create_data_loader(train_df_drop_na,his_pow_feats,batch_size=32):
    ds = MyDataSet(train_df_drop_na,
                   his_pow_feats
                  )
    return DataLoader(ds,batch_size=batch_size)
BATCH_SIZE = 32
train_data_loader = create_data_loader(df_train,his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)
val_data_loader = create_data_loader(df_val, his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)
test_data_loader = create_data_loader(df_test,his_pow_feats=his_pow_feats,batch_size=BATCH_SIZE)


#train_df[cols]
# 7.定义LSTM网络
class GRUModel(nn.Module):
    def __init__(self, feature_size, hidden_size, num_layers, output_size):
        super(GRUModel, self).__init__()
        self.hidden_size = hidden_size  # 隐层大小
        self.num_layers = num_layers  # lstm层数
        # feature_size为特征维度,就是每个时间点对应的特征数量,这里为1
        self.gru = nn.GRU(feature_size, hidden_size, num_layers, batch_first=True,bidirectional=True)
        self.layer_norm = nn.LayerNorm(hidden_size*2)

        self.fc = nn.Linear(hidden_size*2+2, output_size)
        
        self.embedding = nn.Embedding(9, 2)
 
    def forward(self, x,id_label, hidden=None):
        #print(x.shape)
        batch_size = x.shape[0] # 获取批次大小 batch, time_stamp , feat_size
        # 初始化隐层状态
        h_0 = x.data.new(2*self.num_layers, batch_size, self.hidden_size).fill_(0).float()
        if hidden is not None:
            h_0 = hidden

        #print(h_0.size)
        # GRU 运算
        output, hidden = self.gru(x,h_0)
        output = self.layer_norm(output)

        last_output = output[:, -1, :]
        
        #print('output',last_output.shape)
        embed = self.embedding(id_label)
        #print("embed",embed.shape)
        #print('output',output.shape)
        concatenated = torch.cat((embed, last_output), dim=1)
        #print(concatenated.shape)
        
        # 全连接层
        output = self.fc(concatenated)  # 形状为batch_size * timestep, 1
        #print(output.shape)
        # 我们只需要返回最后一个时间片的数据即可
        return output
model = GRUModel(config.feature_size, config.hidden_size, config.num_layers, config.output_size)  # 定义LSTM网络

loss_function = nn.L1Loss()  # 定义损失函数
# class MAPELoss(nn.Module):
#     def __init__(self):
#         super(MAPELoss, self).__init__()

#     def forward(self, y_pred, y_true):
#         epsilon = 1e-8  # 用于避免除以零的小常数
#         absolute_error = torch.abs(y_true - y_pred)
#         relative_error = absolute_error / (torch.abs(y_true) + epsilon)
#         mape = torch.mean(relative_error) * 100
#         return mape
# loss_function = MAPELoss()  # 定义损失函数

optimizer = torch.optim.AdamW(model.parameters(), lr=0.01)  # 定义优化器
from tqdm import tqdm
 
# 8.模型训练
for epoch in range(500):
    model.train()
    running_loss = 0
    train_bar = tqdm(train_data_loader)  # 形成进度条
    for data in train_bar:
        x_train, y_train = data['his_feats'], data['labels']  # 解包迭代器中的X和Y
        optimizer.zero_grad()
        y_train_pred = model(x_train,data['input_ids'])
        loss = loss_function(y_train_pred, y_train.reshape(-1, 1))
        loss.backward()
        optimizer.step()
 
        running_loss += loss.item()
        train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                 config.epochs,
                                                                 loss)
 
    # 模型验证
    model.eval()
    test_loss = 0
    with torch.no_grad():
        test_bar = tqdm(val_data_loader)
        for data in test_bar:
            x_test, y_test = data['his_feats'], data['labels']
            y_test_pred = model(x_test, data['input_ids'])
            test_loss = loss_function(y_test_pred, y_test.reshape(-1, 1))
 
    if test_loss < config.best_loss:
        config.best_loss = test_loss
        torch.save(model.state_dict(), save_path)
 
print('Finished Training')
相关推荐
pzx_0019 分钟前
【集成学习】Boosting算法详解
人工智能·python·深度学习·算法·机器学习·集成学习·boosting
AI大模型learner1 小时前
Scaling Laws:通往更大模型的路径
人工智能·深度学习·机器学习
Scabbards_1 小时前
INT305 Machine Learning
人工智能·深度学习·机器学习
sz66cm3 小时前
数学基础 -- 拉普拉斯算子的原理与应用
深度学习·机器学习·计算机视觉·数学基础
xiaocang6688884 小时前
深度学习:原理、应用与前沿进展
人工智能·深度学习·机器学习
EDPJ5 小时前
(2025,Cosmos,世界基础模型 (WFM) 平台,物理 AI,数据处理,分词器,世界基础模型预训练/后训练,3D一致性)
人工智能·深度学习·视觉语言模型
AIM0866 小时前
稀疏子空间聚类 SSC(Sparse Subspace Clustering)
人工智能·深度学习·机器学习·数学建模·数据挖掘·聚类
孤独且没人爱的纸鹤6 小时前
【机器学习】无监督学习麾下 K-means 聚类如何智能划分,解锁隐藏结构,为市场细分、图像分割、基因聚类精准导航
人工智能·深度学习·机器学习·支持向量机·ai·kmeans·聚类
笔写落去7 小时前
统计学习方法(第二版) 第六章 逻辑斯特回归
人工智能·深度学习·机器学习
snow每天都要好好学习8 小时前
From Orthogonal Time Frequency Space to Affine Frequency Division Multiplexing
深度学习