深度学习记录--mini-batch gradient descent

batch vs mini-batch gradient descent

batch:段,块

与传统的batch梯度下降不同,mini-batch gradient descent将数据分成多个子集,分别进行处理,在数据量非常巨大的情况下,这样处理可以及时进行梯度下降,大大加快训练速度

mini-batch gradient descent的原理

两种方法的梯度下降图如下图所示

batch gradient descent是一条正常的递减的曲线
mini-batch gradient descent是一条噪声很大 的曲线,分成许多小段时,每个小段是一条batch gradient descent曲线,总体看这条曲线还是递减的趋势
为什么会有区别呢?

mini-batch gradient descent中的,可能容易计算,也可能很难计算,这就导致cost时高时低,出现摆动,其实主要是mini-batch的大小的原因

mini-batch size

当size=m,mini-batch gradient descent变为batch gradient descent

梯度下降的噪声更小步长更大 ,最终会收敛于最小值(如下图蓝色曲线)

弊端:如果数据量很大时,单次迭代时间过长
当size=1,变为随机梯度下降(stochastic gradient descent),每个样本都是独立的

每个样本都是随机的,可能靠近最小值,也可能远离最小值,噪声很大无法收敛 ,最终在最小值附近波动(如下图紫色曲线)

弊端:由于每次只处理一个训练样本,失去了向量化的加速效果,训练效率过低
合适的size-->between1 and m

既可以获得向量化的加速效果,又可以及时进行后续操作(减少单次迭代时间)

梯度下降图如下图绿色曲线(噪声相对随机梯度下降较小,最终不会收敛,在最小值附近波动

相关推荐
禾高网络2 分钟前
租赁小程序成品|租赁系统搭建核心功能
java·人工智能·小程序
湫ccc1 小时前
《Opencv》基础操作详解(3)
人工智能·opencv·计算机视觉
Jack_pirate1 小时前
深度学习中的特征到底是什么?
人工智能·深度学习
微凉的衣柜2 小时前
微软在AI时代的战略布局和挑战
人工智能·深度学习·microsoft
GocNeverGiveUp2 小时前
机器学习1-简单神经网络
人工智能·机器学习
Schwertlilien2 小时前
图像处理-Ch2-空间域的图像增强
人工智能
智慧化智能化数字化方案2 小时前
深入解读数据资产化实践指南(2024年)
大数据·人工智能·数据资产管理·数据资产入表·数据资产化实践指南
哦哦~9213 小时前
深度学习驱动的油气开发技术与应用
大数据·人工智能·深度学习·学习
智慧化智能化数字化方案3 小时前
120页PPT讲解ChatGPT如何与财务数字化转型的业财融合
人工智能·chatgpt
矩阵推荐官hy147623 小时前
短视频矩阵系统种类繁多,应该如何对比选择?
人工智能·python·矩阵·流量运营