深度学习记录--mini-batch gradient descent

batch vs mini-batch gradient descent

batch:段,块

与传统的batch梯度下降不同,mini-batch gradient descent将数据分成多个子集,分别进行处理,在数据量非常巨大的情况下,这样处理可以及时进行梯度下降,大大加快训练速度

mini-batch gradient descent的原理

两种方法的梯度下降图如下图所示

batch gradient descent是一条正常的递减的曲线
mini-batch gradient descent是一条噪声很大 的曲线,分成许多小段时,每个小段是一条batch gradient descent曲线,总体看这条曲线还是递减的趋势
为什么会有区别呢?

mini-batch gradient descent中的,可能容易计算,也可能很难计算,这就导致cost时高时低,出现摆动,其实主要是mini-batch的大小的原因

mini-batch size

当size=m,mini-batch gradient descent变为batch gradient descent

梯度下降的噪声更小步长更大 ,最终会收敛于最小值(如下图蓝色曲线)

弊端:如果数据量很大时,单次迭代时间过长
当size=1,变为随机梯度下降(stochastic gradient descent),每个样本都是独立的

每个样本都是随机的,可能靠近最小值,也可能远离最小值,噪声很大无法收敛 ,最终在最小值附近波动(如下图紫色曲线)

弊端:由于每次只处理一个训练样本,失去了向量化的加速效果,训练效率过低
合适的size-->between1 and m

既可以获得向量化的加速效果,又可以及时进行后续操作(减少单次迭代时间)

梯度下降图如下图绿色曲线(噪声相对随机梯度下降较小,最终不会收敛,在最小值附近波动

相关推荐
液态不合群2 分钟前
推荐算法中的位置消偏,如何解决?
人工智能·机器学习·推荐算法
饭饭大王6666 分钟前
当 AI 系统开始“自省”——在 `ops-transformer` 中嵌入元认知能力
人工智能·深度学习·transformer
ujainu6 分钟前
CANN仓库中的AIGC可移植性工程:昇腾AI软件栈如何实现“一次开发,多端部署”的跨生态兼容
人工智能·aigc
初恋叫萱萱8 分钟前
CANN 生态实战指南:从零构建一个高性能边缘 AI 应用的完整流程
人工智能
Lethehong11 分钟前
CANN ops-nn仓库深度解读:AIGC时代的神经网络算子优化实践
人工智能·神经网络·aigc
开开心心就好12 分钟前
AI人声伴奏分离工具,离线提取伴奏K歌用
java·linux·开发语言·网络·人工智能·电脑·blender
TechWJ13 分钟前
CANN ops-nn神经网络算子库技术剖析:NPU加速的基石
人工智能·深度学习·神经网络·cann·ops-nn
凌杰13 分钟前
AI 学习笔记:LLM 的部署与测试
人工智能
心疼你的一切13 分钟前
拆解 CANN 仓库:实现 AIGC 文本生成昇腾端部署
数据仓库·深度学习·aigc·cann
心易行者16 分钟前
在 Claude 4.6 发布的当下,一个不懂编程的人聊聊 Claude Code:当 AI 终于学会自己动手干活
人工智能