深度学习记录--mini-batch gradient descent

batch vs mini-batch gradient descent

batch:段,块

与传统的batch梯度下降不同,mini-batch gradient descent将数据分成多个子集,分别进行处理,在数据量非常巨大的情况下,这样处理可以及时进行梯度下降,大大加快训练速度

mini-batch gradient descent的原理

两种方法的梯度下降图如下图所示

batch gradient descent是一条正常的递减的曲线
mini-batch gradient descent是一条噪声很大 的曲线,分成许多小段时,每个小段是一条batch gradient descent曲线,总体看这条曲线还是递减的趋势
为什么会有区别呢?

mini-batch gradient descent中的,可能容易计算,也可能很难计算,这就导致cost时高时低,出现摆动,其实主要是mini-batch的大小的原因

mini-batch size

当size=m,mini-batch gradient descent变为batch gradient descent

梯度下降的噪声更小步长更大 ,最终会收敛于最小值(如下图蓝色曲线)

弊端:如果数据量很大时,单次迭代时间过长
当size=1,变为随机梯度下降(stochastic gradient descent),每个样本都是独立的

每个样本都是随机的,可能靠近最小值,也可能远离最小值,噪声很大无法收敛 ,最终在最小值附近波动(如下图紫色曲线)

弊端:由于每次只处理一个训练样本,失去了向量化的加速效果,训练效率过低
合适的size-->between1 and m

既可以获得向量化的加速效果,又可以及时进行后续操作(减少单次迭代时间)

梯度下降图如下图绿色曲线(噪声相对随机梯度下降较小,最终不会收敛,在最小值附近波动

相关推荐
Junlan27几秒前
Cursor使用入门及连接服务器方法(更新中)
服务器·人工智能·笔记
robot_learner5 分钟前
OpenClaw, 突然走红的智能体
人工智能
ujainu小5 分钟前
CANN仓库内容深度解读:昇腾AI生态的基石与AIGC发展的引擎
人工智能·aigc
rcc86287 分钟前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习
霖大侠12 分钟前
【无标题】
人工智能·深度学习·机器学习
callJJ21 分钟前
Spring AI 文本聊天模型完全指南:ChatModel 与 ChatClient
java·大数据·人工智能·spring·spring ai·聊天模型
是店小二呀36 分钟前
CANN 异构计算的极限扩展:从算子融合到多卡通信的统一优化策略
人工智能·深度学习·transformer
冻感糕人~39 分钟前
收藏备用|小白&程序员必看!AI Agent入门详解(附工业落地实操关联)
大数据·人工智能·架构·大模型·agent·ai大模型·大模型学习
予枫的编程笔记42 分钟前
【Linux入门篇】Ubuntu和CentOS包管理不一样?apt与yum对比实操,看完再也不混淆
linux·人工智能·ubuntu·centos·linux包管理·linux新手教程·rpm离线安装
陈西子在网上冲浪43 分钟前
当全国人民用 AI 点奶茶时,你的企业官网还在“人工建站”吗?
人工智能