OpenCV进行图形检测

OpenCv图形检测

绘制图像轮廓:

python 复制代码
img = cv2.imread("image.png")
# 彩色图像转为变成单通道灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 灰度图像转为二值图像
t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
# 检测图像中出现的所有轮廓,记录轮廓的每一个点
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
# 绘制所有轮廓,宽度为5,颜色为红色
cv2.drawContours(img, contours, -1, (0, 0, 255), 5)

为轮廓添加矩形框:

python 复制代码
# 获取第一个轮廓的最小矩形边框,记录坐标和宽高
x, y, w, h = cv2.boundingRect(contours[0])
# 绘制红色矩形
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)

为轮廓添加圆形框:

python 复制代码
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# 获取最小圆形边框的圆心点和半径
center, radius = cv2.minEnclosingCircle(contours[0])
# 圆心点横坐标转为近似整数
x = int(round(center[0]))
# 圆心点纵坐标转为近似整数
y = int(round(center[1]))
cv2.circle(img, (x, y), int(radius), (0, 0, 255), 2)

Canny边缘检测:

python 复制代码
img = cv2.imread("image.png")
r1 = cv2.Canny(img, 10, 50)

直线检测:

python 复制代码
img = cv2.imread("image.jpg")
# 复制原图
o = img.copy()
# 使用中值滤波进行降噪
o = cv2.medianBlur(o, 5)
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)
binary = cv2.Canny(o, 50, 150)  # 绘制边缘图像
# 检测直线,精度为1,全角度,阈值为15,线段最短100,最小间隔为18
lines = cv2.HoughLinesP(binary, 1, np.pi / 180, 15, minLineLength=100, maxLineGap=18)
for line in lines:  # 遍历所有直线
    x1, y1, x2, y2 = line[0]  # 读取直线两个端点的坐标
    cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 在原始图像上绘制直线

圆环检测:

python 复制代码
img = cv2.imread("image.jpg")
o = img.copy()
o = cv2.medianBlur(o, 5)
gray = cv2.cvtColor(o, cv2.COLOR_BGR2GRAY)  # 从彩色图像变成单通道灰度图像
# 检测圆环,圆心最小间距为70,Canny最大阈值为100,投票数超过25。最小半径为10,最大半径为50
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 70, param1=100, param2=25, minRadius=10, maxRadius=50)
circles = np.uint(np.around(circles))  # 将数组元素四舍五入成整数
for c in circles[0]:  # 遍历圆环结果
    x, y, r = c  # 圆心横坐标、纵坐标和圆半径
    # 绘制圆环
    cv2.circle(img, (x, y), r, (0, 0, 255), 3)
    # 绘制圆心
    cv2.circle(img, (x, y), 2, (0, 0, 255), 3)
相关推荐
码银2 分钟前
冲破AI 浪潮冲击下的 迷茫与焦虑
人工智能
何大春6 分钟前
【弱监督语义分割】Self-supervised Image-specific Prototype Exploration for WSSS 论文阅读
论文阅读·人工智能·python·深度学习·论文笔记·原型模式
uncle_ll13 分钟前
PyTorch图像预处理:计算均值和方差以实现标准化
图像处理·人工智能·pytorch·均值算法·标准化
宋1381027972014 分钟前
Manus Xsens Metagloves虚拟现实手套
人工智能·机器人·vr·动作捕捉
SEVEN-YEARS17 分钟前
深入理解TensorFlow中的形状处理函数
人工智能·python·tensorflow
世优科技虚拟人21 分钟前
AI、VR与空间计算:教育和文旅领域的数字转型力量
人工智能·vr·空间计算
cloud studio AI应用27 分钟前
腾讯云 AI 代码助手:产品研发过程的思考和方法论
人工智能·云计算·腾讯云
禁默38 分钟前
第六届机器人、智能控制与人工智能国际学术会议(RICAI 2024)
人工智能·机器人·智能控制
Robot2511 小时前
浅谈,华为切入具身智能赛道
人工智能
只怕自己不够好1 小时前
OpenCV 图像运算全解析:加法、位运算(与、异或)在图像处理中的奇妙应用
图像处理·人工智能·opencv