【机器学习】实验记录工具

Weights & Biases(简称为 WandB)是一个用于跟踪机器学习实验、可视化实验结果并进行协作的工具。它提供了一个简单易用的界面,让用户可以轻松地记录模型训练过程中的指标、超参数和输出结果,并将这些信息可视化展示。WandB 还支持团队协作,可以让团队成员共享实验记录、交流想法,并进行实验结果的比较和分析。通过 WandB,用户可以更好地管理和理解他们的机器学习项目,加速实验迭代过程,提高模型的性能。WandB 提供了 Python API 和命令行工具,可以方便地与常用的机器学习框架(如 TensorFlow、PyTorch 等)集成使用。

  • 安装

    pip install wandb

  • 代码示例

    import wandb
    import random

    启动五次模拟实验

    total_runs = 5
    for run in range(total_runs):
    # 开启一个新的实验
    wandb.init(
    # 项目名
    project="basic-intro",
    # 运行的实验名
    name=f"experiment_{run}",
    # Track hyperparameters and run metadata
    config={
    "learning_rate": 0.02,
    "architecture": "CNN",
    "dataset": "CIFAR-100",
    "epochs": 10,
    })

    复制代码
      # 模拟训练
      epochs = 10
      offset = random.random() / 5
      for epoch in range(2, epochs):
          acc = 1 - 2 ** -epoch - random.random() / epoch - offset
          loss = 2 ** -epoch + random.random() / epoch + offset
          
          # 记录指标到 W&B
          wandb.log({"acc": acc, "loss": loss})
          
      # 结束
      wandb.finish()

以上代码演示了如何使用 Weights & Biases(W&B)库进行实验追踪和记录。具体解释如下:

  1. 导入 wandb 模块和 random 模块。
  2. 设置一个变量 total_runs,表示要运行的实验次数。
  3. 使用 for 循环来多次运行实验。
  4. 在每次循环中,通过 wandb.init() 方法初始化一个新的实验,并指定了实验的项目名、运行的实验名以及要跟踪的超参数和运行元数据。
  5. 在模拟训练过程中,使用另一个 for 循环来模拟多个训练周期。
  6. 在每个训练周期内,生成模拟的准确率(acc)和损失(loss)数据,并使用 wandb.log() 方法将这些数据记录到 W&B 中。
  7. 在每次实验结束后,使用 wandb.finish() 方法完成当前实验的记录。
相关推荐
蓝婷儿37 分钟前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
程序员阿超的博客3 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
xingshanchang4 小时前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
reddingtons5 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK5 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch5 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch6 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines6 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey6 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币6 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉