【机器学习】实验记录工具

Weights & Biases(简称为 WandB)是一个用于跟踪机器学习实验、可视化实验结果并进行协作的工具。它提供了一个简单易用的界面,让用户可以轻松地记录模型训练过程中的指标、超参数和输出结果,并将这些信息可视化展示。WandB 还支持团队协作,可以让团队成员共享实验记录、交流想法,并进行实验结果的比较和分析。通过 WandB,用户可以更好地管理和理解他们的机器学习项目,加速实验迭代过程,提高模型的性能。WandB 提供了 Python API 和命令行工具,可以方便地与常用的机器学习框架(如 TensorFlow、PyTorch 等)集成使用。

  • 安装

    pip install wandb

  • 代码示例

    import wandb
    import random

    启动五次模拟实验

    total_runs = 5
    for run in range(total_runs):
    # 开启一个新的实验
    wandb.init(
    # 项目名
    project="basic-intro",
    # 运行的实验名
    name=f"experiment_{run}",
    # Track hyperparameters and run metadata
    config={
    "learning_rate": 0.02,
    "architecture": "CNN",
    "dataset": "CIFAR-100",
    "epochs": 10,
    })

    复制代码
      # 模拟训练
      epochs = 10
      offset = random.random() / 5
      for epoch in range(2, epochs):
          acc = 1 - 2 ** -epoch - random.random() / epoch - offset
          loss = 2 ** -epoch + random.random() / epoch + offset
          
          # 记录指标到 W&B
          wandb.log({"acc": acc, "loss": loss})
          
      # 结束
      wandb.finish()

以上代码演示了如何使用 Weights & Biases(W&B)库进行实验追踪和记录。具体解释如下:

  1. 导入 wandb 模块和 random 模块。
  2. 设置一个变量 total_runs,表示要运行的实验次数。
  3. 使用 for 循环来多次运行实验。
  4. 在每次循环中,通过 wandb.init() 方法初始化一个新的实验,并指定了实验的项目名、运行的实验名以及要跟踪的超参数和运行元数据。
  5. 在模拟训练过程中,使用另一个 for 循环来模拟多个训练周期。
  6. 在每个训练周期内,生成模拟的准确率(acc)和损失(loss)数据,并使用 wandb.log() 方法将这些数据记录到 W&B 中。
  7. 在每次实验结束后,使用 wandb.finish() 方法完成当前实验的记录。
相关推荐
reddingtons30 分钟前
Illustrator 3D Mockup:零建模,矢量包装一键“上架”实拍
人工智能·ui·3d·aigc·illustrator·设计师·平面设计
孟祥_成都33 分钟前
前端角度学 AI - 15 分钟入门 Python
前端·人工智能
Java中文社群1 小时前
太顶了!全网最全的600+图片生成玩法!
人工智能
阿里云大数据AI技术1 小时前
EMR AI 助手开启公测:用 AI 重塑大数据运维,更简单、更智能
人工智能
言之。1 小时前
AI时代的UI发展
人工智能·ui
拖拖7651 小时前
从“死”文档到“活”助手:Paper2Agent 如何将科研论文一键转化为可执行 AI
人工智能
攻城狮7号1 小时前
告别显存焦虑:阿里开源 Z-Image 如何用 6B 参数立足AI 绘画时代
人工智能·ai 绘画·qwen-image·z-image-turbo·阿里开源模型
Christo31 小时前
ICML-2019《Optimal Transport for structured data with application on graphs》
人工智能·算法·机器学习·数据挖掘
阿杰学AI1 小时前
AI核心知识24——大语言模型之AI 幻觉(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·hallucination·ai幻觉
AI_56781 小时前
AI知识库如何重塑服务体验
大数据·人工智能