【机器学习】实验记录工具

Weights & Biases(简称为 WandB)是一个用于跟踪机器学习实验、可视化实验结果并进行协作的工具。它提供了一个简单易用的界面,让用户可以轻松地记录模型训练过程中的指标、超参数和输出结果,并将这些信息可视化展示。WandB 还支持团队协作,可以让团队成员共享实验记录、交流想法,并进行实验结果的比较和分析。通过 WandB,用户可以更好地管理和理解他们的机器学习项目,加速实验迭代过程,提高模型的性能。WandB 提供了 Python API 和命令行工具,可以方便地与常用的机器学习框架(如 TensorFlow、PyTorch 等)集成使用。

  • 安装

    pip install wandb

  • 代码示例

    import wandb
    import random

    启动五次模拟实验

    total_runs = 5
    for run in range(total_runs):
    # 开启一个新的实验
    wandb.init(
    # 项目名
    project="basic-intro",
    # 运行的实验名
    name=f"experiment_{run}",
    # Track hyperparameters and run metadata
    config={
    "learning_rate": 0.02,
    "architecture": "CNN",
    "dataset": "CIFAR-100",
    "epochs": 10,
    })

    复制代码
      # 模拟训练
      epochs = 10
      offset = random.random() / 5
      for epoch in range(2, epochs):
          acc = 1 - 2 ** -epoch - random.random() / epoch - offset
          loss = 2 ** -epoch + random.random() / epoch + offset
          
          # 记录指标到 W&B
          wandb.log({"acc": acc, "loss": loss})
          
      # 结束
      wandb.finish()

以上代码演示了如何使用 Weights & Biases(W&B)库进行实验追踪和记录。具体解释如下:

  1. 导入 wandb 模块和 random 模块。
  2. 设置一个变量 total_runs,表示要运行的实验次数。
  3. 使用 for 循环来多次运行实验。
  4. 在每次循环中,通过 wandb.init() 方法初始化一个新的实验,并指定了实验的项目名、运行的实验名以及要跟踪的超参数和运行元数据。
  5. 在模拟训练过程中,使用另一个 for 循环来模拟多个训练周期。
  6. 在每个训练周期内,生成模拟的准确率(acc)和损失(loss)数据,并使用 wandb.log() 方法将这些数据记录到 W&B 中。
  7. 在每次实验结束后,使用 wandb.finish() 方法完成当前实验的记录。
相关推荐
king王一帅1 小时前
Incremark Solid 版本上线:Vue/React/Svelte/Solid 四大框架,统一体验
前端·javascript·人工智能
泰迪智能科技3 小时前
分享|职业技术培训|数字技术应用工程师快问快答
人工智能
Dxy12393102165 小时前
如何给AI提问:让机器高效理解你的需求
人工智能
少林码僧5 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)5 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
没学上了6 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
Niuguangshuo6 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
智驱力人工智能6 小时前
守护流动的规则 基于视觉分析的穿越导流线区检测技术工程实践 交通路口导流区穿越实时预警技术 智慧交通部署指南
人工智能·opencv·安全·目标检测·计算机视觉·cnn·边缘计算
AI产品备案6 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记