【学习笔记】遥感影像分类相关精度指标

文章目录

0.混淆矩阵

混淆矩阵是分类精度的评定指标。是一个用于表示分为某一类别的像元个数与地面检验为该类别数的比较阵列。

对检核分类精度的样区内所有的像元,统计其分类图中的类别与实际类别之间的混淆程度。

混淆矩阵中,对角线上元素为被正确分类的样本数目,非对角线上的元素为错分的样本数。

1. 精度名词解释

名词 解释
生产者(制图) 精度 地表真实为A类,分类图像的像元归为A的概率
用户精度 假定分类器将像元归到A类时,地表真实类别是A的概率
总体分类精度 等于被正确分类的像元总和除以总像元数,地表真实图像或地表真实感兴趣区限定了像元的真实分类。被正确分类的像元沿着混淆矩阵的对角线分布,它显示出被分类到正确地表真实分类中的像元数。像元总数等于所有地表真实分类中的像元总和。
Kappa系数 所有地表真实分类中的像元总数(N) 乘以混淆矩阵对角线(Xkk) 的和,再减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方差减去某一类中地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。


用户精度:是指正确分到X类的像元总数(对角线值)与分类器将整个影像的像元分为X类的像元总数(混淆矩阵中X类行的总和)比率。用来表示分类结果中,各类别的可信度,整张分类成果的可靠性。

用户精度 = A / G

生产者精度:指分类器将整个影像的像元正确分为A类的像元数(对角线值)与A类真实参考总数(混淆矩阵中A类列的总和)的比率。用于比较分类方法的好坏。

生产者精度= A / D

总体分类精度:指被正确分类的类别像元数与总的类别个数的比值。

总体分类精度= A + I + J / N

2. Kappa系数

kappa系数是一种衡量分类精度的指标。它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xii)的和,再减去某一类地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果,再除以总像元数的平方减去某一类地表真实像元总数与该类中被分类像元总数之积对所有类别求和的结果所得到的。

*Kappa系数= [ N (A+I+J)-(DG+P M+QO) ] / [ N2 -(D G+PM+QO) ]**

Kappa系数是用于测定两幅图像之间的吻合度或精度的指标;

Kappa系数和总体精度的区别在于:总体精度只考虑了位于对角线上的像素数量,Kappa系数既考虑了对角线上被正确分类的像素,又考虑了不在对角线上的各种漏分和错分错误。

Kappa系数 分类质量
<0.00 很差
0.00~0.20
0.20~0.40 一般
0.40~0.60
0.60~0.80 很好
0.80~1.00 极好

3.举个栗子

对这个例子的通俗描述(有可能不太准确)为:我们在实际地物上共取了 650 个像素点:有137个像素点属于类别1、有130个像素点属于类别2、有134个像素点属于类别3、有123个像素点属于类别4、有126个像素点属于类别5;但是呢,实验过程中分的太均匀了,给每一类都分到了130个像素点。

ok,分类完成了,怎样衡量这次分类实验的精度呢?前辈么就提出了四个量:生产者(制图) 精度、用户精度、总体分类精度、Kappa系数。看它们的字面意思不太好理解,那么我们可以这样记:生产精度可以衡量漏分误差,用户精度可以衡量多分误差(简称:生漏用多,越用越多)


参考资料

1\] [遥感图像分类领域的混淆矩阵](https://www.codenong.com/cs106842879/)

相关推荐
weixin_437398215 分钟前
转Go学习笔记(2)进阶
服务器·笔记·后端·学习·架构·golang
慕y27427 分钟前
Java学习第十六部分——JUnit框架
java·开发语言·学习
peace..1 小时前
温湿度变送器与电脑进行485通讯连接并显示在触摸屏中(mcgs)
经验分享·学习·其他
teeeeeeemo1 小时前
回调函数 vs Promise vs async/await区别
开发语言·前端·javascript·笔记
软件黑马王子2 小时前
C#系统学习第八章——字符串
开发语言·学习·c#
AI数据皮皮侠3 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
strongwyy4 小时前
蓝牙墨水屏上位机学习(2)
学习
九皇叔叔4 小时前
(3)手摸手-学习 Vue3 之 变量声明【ref 和 reactive】区别
学习
致***锌5 小时前
期权标准化合约是什么?
笔记
Wilber的技术分享6 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost