6K star!大神出书,解决(几乎)所有机器学习的问题

今天我们推荐的既是一个开源项目更是一本书,它是由技术界的大神Abhishek Thakur 所作,可以帮你解决(几乎)所有机器学习的问题,开源项目在GitHub 有 6K Star,它就是:approachingalmost。

approachingalmost是什么?

approachingalmost是作者取项目名称时候的简写,书名是:《Approaching (almost) any machine learning problem》。听听这个名字就觉得霸气,本书介绍了如何应对 ML 和 DL 过程中遇到的挑战,而非单纯地解释算法。该书内含大量代码,适合有一定ML与DL理论基础,想深入研究应用机器学习的读者阅读。

关于作者

作者 Abhishek Thakur 真的是来头不小,他在kaggle上累计拿了1000多块奖牌,最高排名排到第三,妥妥的技术大神。他是 boost.ai公司的首席数据科学家,所以在机器学习领域真的是研究已久。

其实做个项目来说作者创造已经很久了,2017年,他在 Linkedin 发表了一篇名为Approaching (Almost) Any Machine Learning Problem的文章,介绍他建立的一个自动的机器学习框架,几乎可以解决任何机器学习问题,这篇文章曾火遍 Kaggle。

后来作者将他文章的内容整体丰富,最后出了一本书,可以算是机器学习的优质入门学习材料。

关于书籍

《Approaching (almost) any machine learning problem》有足足300页,内容可以说是非常的充实。作者在 kaggle 上获得那么多的奖牌,这本书可以说是他理论+实践的最佳产物。本书在讨论中相对会更侧重应用机器学习模型,例如预处理步骤等。以下是本书的目录

目录

  • Setting up your working environment
  • Supervised vs unsupervised learning
  • Cross-validation
  • Evaluation metrics
  • Arranging machine learning projects
  • Approaching categorical variables
  • Feature engineering
  • Feature selection
  • Hyperparameter optimization
  • Approaching image classification & segmentation
  • Approaching text classification/regression
  • Approaching ensembling and stacking
  • Approaching reproducible code & model serving

另外现在网上的爱好者将书籍中的大部分进行了翻译,里面有些内容相对简单他就没有全部翻译,翻译的内容如下:

毕竟不是每一个同学的英语都那么好,所以翻译版真的是大家的学习福音啊,也万分感谢翻译的同学。

项目信息

为了方便不方便访问GitHub的同学,我把英文原版和翻译版都进行了整理,如果有需要可以关注公众号:IT咖啡馆,私信回复:AAAMLP,就可以获取下载了。

相关推荐
Chef_Chen32 分钟前
从0开始学习机器学习--Day13--神经网络如何处理复杂非线性函数
神经网络·学习·机器学习
Troc_wangpeng34 分钟前
R language 关于二维平面直角坐标系的制作
开发语言·机器学习
-Nemophilist-1 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
3 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
忘梓.3 小时前
划界与分类的艺术:支持向量机(SVM)的深度解析
机器学习·支持向量机·分类
Chef_Chen3 小时前
从0开始机器学习--Day17--神经网络反向传播作业
python·神经网络·机器学习
MarkHD4 小时前
第十一天 线性代数基础
线性代数·决策树·机器学习
打羽毛球吗️4 小时前
机器学习中的两种主要思路:数据驱动与模型驱动
人工智能·机器学习
小馒头学python4 小时前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习