2d关键点可视化 coco转h36m人体关键点

目录

coco转h36m人体关键点

[opencv 2d关键点可视化](#opencv 2d关键点可视化)


coco转h36m人体关键点

mhformer中有

python 复制代码
def h36m_coco_format(keypoints, scores):
    assert len(keypoints.shape) == 4 and len(scores.shape) == 3

    h36m_kpts = []
    h36m_scores = []
    valid_frames = []

    for i in range(keypoints.shape[0]):
        kpts = keypoints[i]
        score = scores[i]

        new_score = np.zeros_like(score, dtype=np.float32)

        if np.sum(kpts) != 0.:
            kpts, valid_frame = coco_h36m(kpts)
            h36m_kpts.append(kpts)
            valid_frames.append(valid_frame)

            new_score[:, h36m_coco_order] = score[:, coco_order]
            new_score[:, 0] = np.mean(score[:, [11, 12]], axis=1, dtype=np.float32)
            new_score[:, 8] = np.mean(score[:, [5, 6]], axis=1, dtype=np.float32)
            new_score[:, 7] = np.mean(new_score[:, [0, 8]], axis=1, dtype=np.float32)
            new_score[:, 10] = np.mean(score[:, [1, 2, 3, 4]], axis=1, dtype=np.float32)

            h36m_scores.append(new_score)

    h36m_kpts = np.asarray(h36m_kpts, dtype=np.float32)
    h36m_scores = np.asarray(h36m_scores, dtype=np.float32)

    return h36m_kpts, h36m_scores, valid_frames

opencv 2d关键点可视化

python 复制代码
import numpy as np


import cv2
import numpy as np
import json


kpt_color_map = {'h': {'id': 0, 'color': [255, 0, 0], 'radius': 3, 'thickness': -1}, 'tail': {'id': 1, 'color': [0, 255, 0], 'radius': 2, 'thickness': -1}}

# 点类别文字
kpt_labelstr = {'font_size': 1,  # 字体大小
    'font_thickness': 3,  # 字体粗细
    'offset_x': 20,  # X 方向,文字偏移距离,向右为正
    'offset_y': 10,  # Y 方向,文字偏移距离,向下为正
}

labelme_path = r'E:\data\new_path\635_5225_02-1\input\0000.json'
with open(labelme_path, 'r', encoding='utf-8') as f:
    labelme = json.load(f)

img_bgr=cv2.imread(r'E:\data\new_path\635_5225_02-1\input\0000.png')

for each_ann in labelme['shapes']:  # 遍历每一个标注


    kpt_label = each_ann['label']  # 该点的类别

    for point in each_ann['points']:
        kpt_xy = point
        kpt_x, kpt_y = int(kpt_xy[0]), int(kpt_xy[1])

        # 该点的可视化配置
        kpt_color = kpt_color_map[kpt_label]['color']  # 颜色
        kpt_radius = kpt_color_map[kpt_label]['radius']  # 半径
        kpt_thickness = kpt_color_map[kpt_label]['thickness']  # 线宽(-1代表填充)

        # 画圆:画该关键点
        img_bgr = cv2.circle(img_bgr, (kpt_x, kpt_y), kpt_radius, kpt_color, kpt_thickness)

        # 写该点类别文字:图片,文字字符串,文字左上角坐标,字体,字体大小,颜色,字体粗细
        img_bgr = cv2.putText(img_bgr, kpt_label, (kpt_x + kpt_labelstr['offset_x'], kpt_y + kpt_labelstr['offset_y']), cv2.FONT_HERSHEY_SIMPLEX, kpt_labelstr['font_size'], kpt_color, kpt_labelstr['font_thickness'])

cv2.imshow('img',img_bgr)
cv2.waitKey(0)
相关推荐
美狐美颜SDK开放平台4 分钟前
多终端适配下的人脸美型方案:美颜SDK工程开发实践分享
人工智能·音视频·美颜sdk·直播美颜sdk·视频美颜sdk
哈__7 分钟前
CANN加速Image Captioning图像描述生成:视觉特征提取与文本生成优化
人工智能
禁默11 分钟前
Ops-Transformer深入:CANN生态Transformer专用算子库赋能多模态生成效率跃迁
人工智能·深度学习·transformer·cann
杜子不疼.13 分钟前
基于CANN GE图引擎的深度学习模型编译与优化技术
人工智能·深度学习
L、21817 分钟前
深入理解CANN:面向AI加速的异构计算架构详解
人工智能·架构
chaser&upper23 分钟前
预见未来:在 AtomGit 解码 CANN ops-nn 的投机采样加速
人工智能·深度学习·神经网络
松☆26 分钟前
CANN与大模型推理:在边缘端高效运行7B参数语言模型的实践指南
人工智能·算法·语言模型
结局无敌33 分钟前
深度探究cann仓库下的infra:AI计算的底层基础设施底座
人工智能
m0_4665252933 分钟前
绿盟科技风云卫AI安全能力平台成果重磅发布
大数据·数据库·人工智能·安全
慢半拍iii34 分钟前
从零搭建CNN:如何高效调用ops-nn算子库
人工智能·神经网络·ai·cnn·cann