高光谱图像加载、归一化和增强(jupyter book)

1.获取高光谱图像:我用的是indian_pines的数据集,感兴趣的兄弟可以自行去官方网下载,gt的那个是它的标签哦,别搞错了。

2.图像加载:

(1)从本地路径加载

python 复制代码
import scipy.io as sio

# 文件路径
file_path = '你的本地路径'

# 使用scipy加载.mat文件
data = sio.loadmat(file_path)

# 提取高光谱图像数据
spectral_image = data['indian_pines']

(2)记得查看打印下你的数据集维度,print("数据集维度:", spectral_image.shape),后面有用到。

3.归一化处理:

归一化处理:将数据集的值缩放到一个特定的范围内的过程。在显示图像时,归一化处理可以使得图像的亮度和对比度更加均衡,以便更好地观察图像中的细节。

python 复制代码
#数据集归一化处理
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')#将 Matplotlib 的后端设置为一个支持图像显示的后端
%matplotlib inline#将图像嵌入jupyter book中


# 对每个通道进行归一化
normalized_image = spectral_image / np.max(spectral_image)

# 将每个通道转换为灰度图像
gray_image = np.mean(normalized_image, axis=-1)

# 将灰度图像堆叠在一起来创建伪彩色图像
colorized_image = np.stack([gray_image] * 3, axis=-1)

# 显示图像
plt.imshow(colorized_image)
plt.axis('off')
plt.show()

4.图像增强:前面显示的图像太模糊了,我觉得很难受,给它弄增强了,就明显一些。

python 复制代码
#图像增强
import cv2
# 将灰度图像转换为伪彩色图像
colorized_image = cv2.applyColorMap((gray_image * 255).astype(np.uint8), cv2.COLORMAP_JET)
# 显示图像
plt.imshow(colorized_image)
plt.axis('off')
plt.show()
相关推荐
关山11 分钟前
MCP实战
python·ai编程·mcp
悠哉悠哉愿意27 分钟前
【Python语法基础学习笔记】if语句
笔记·python·学习
Q_Q196328847536 分钟前
python的电影院座位管理可视化数据分析系统
开发语言·spring boot·python·django·flask·node.js·php
BYSJMG1 小时前
计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计
杜子不疼.1 小时前
《Python学习之第三方库:开启无限可能》
开发语言·python·学习
青衫客362 小时前
用 Python 实现一个“小型 ReAct 智能体”:思维链 + 工具调用 + 环境交互
python·大模型·llm·react
AI视觉网奇2 小时前
音频分类模型笔记
人工智能·python·深度学习
Ratten3 小时前
【Python 实战】---- 实现一个可选择、配置操作的批量文件上传工具(四)配置管理界面和逻辑实现
python
Ratten3 小时前
【Python 实战】---- 实现一个可选择、配置操作的批量文件上传工具(五)打包成 exe 应用
python
跟橙姐学代码3 小时前
写 Python 函数别再死抠参数了,这招让代码瞬间灵活
前端·python