高光谱图像加载、归一化和增强(jupyter book)

1.获取高光谱图像:我用的是indian_pines的数据集,感兴趣的兄弟可以自行去官方网下载,gt的那个是它的标签哦,别搞错了。

2.图像加载:

(1)从本地路径加载

python 复制代码
import scipy.io as sio

# 文件路径
file_path = '你的本地路径'

# 使用scipy加载.mat文件
data = sio.loadmat(file_path)

# 提取高光谱图像数据
spectral_image = data['indian_pines']

(2)记得查看打印下你的数据集维度,print("数据集维度:", spectral_image.shape),后面有用到。

3.归一化处理:

归一化处理:将数据集的值缩放到一个特定的范围内的过程。在显示图像时,归一化处理可以使得图像的亮度和对比度更加均衡,以便更好地观察图像中的细节。

python 复制代码
#数据集归一化处理
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')#将 Matplotlib 的后端设置为一个支持图像显示的后端
%matplotlib inline#将图像嵌入jupyter book中


# 对每个通道进行归一化
normalized_image = spectral_image / np.max(spectral_image)

# 将每个通道转换为灰度图像
gray_image = np.mean(normalized_image, axis=-1)

# 将灰度图像堆叠在一起来创建伪彩色图像
colorized_image = np.stack([gray_image] * 3, axis=-1)

# 显示图像
plt.imshow(colorized_image)
plt.axis('off')
plt.show()

4.图像增强:前面显示的图像太模糊了,我觉得很难受,给它弄增强了,就明显一些。

python 复制代码
#图像增强
import cv2
# 将灰度图像转换为伪彩色图像
colorized_image = cv2.applyColorMap((gray_image * 255).astype(np.uint8), cv2.COLORMAP_JET)
# 显示图像
plt.imshow(colorized_image)
plt.axis('off')
plt.show()
相关推荐
Niuguangshuo8 分钟前
Python设计模式:代理模式
开发语言·python·代理模式
www_pp_11 分钟前
# 实时人脸识别系统:基于 OpenCV 和 Python 的实现
人工智能·python·opencv
带娃的IT创业者2 小时前
《Python实战进阶》No39:模型部署——TensorFlow Serving 与 ONNX
pytorch·python·tensorflow·持续部署
Bruce-li__2 小时前
深入理解Python asyncio:从入门到实战,掌握异步编程精髓
网络·数据库·python
九月镇灵将2 小时前
6.git项目实现变更拉取与上传
git·python·scrapy·scrapyd·gitpython·gerapy
小张学Python2 小时前
AI数字人Heygem:口播与唇形同步的福音,无需docker,无需配置环境,一键整合包来了
python·数字人·heygem
跳跳糖炒酸奶2 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
步木木3 小时前
Anaconda和Pycharm的区别,以及如何选择两者
ide·python·pycharm
星始流年3 小时前
解决PyInstaller打包PySide6+QML应用的资源文件问题
python·llm·pyspider
南玖yy3 小时前
Python网络爬虫:从入门到实践
爬虫·python