深度学习-搭建Colab环境

Google Colab(Colaboratory) 是一个免费的云端环境,旨在帮助开发者和研究人员轻松进行机器学习和数据科学工作。它提供了许多优势,使得编写、执行和共享代码变得更加简单和高效。Colab 在云端提供了预配置的环境,可以直接开始编写代码,并且提供了免费的 GPU 和 TPU 资源,这对于训练深度学习模型等计算密集型任务非常有帮助,可以加速模型训练过程。

一、Colab网站介绍

Google Colab(Colaboratory) 是一个免费的云端环境,旨在帮助开发者和研究人员轻松进行机器学习和数据科学工作。可以在Colab官网上直接新建代码文件并运行,Colab 在云端提供了预配置的Python环境,免费的GPU和TPU资源,这有助于加速计算密集型任务,如深度学习模型的训练。


二、Colab 分配GPU/CPU/TPU

点击右上角分配,分配服务器资源。

输入 Python 代码:

python 复制代码
!nvidia-smi

可以查看被分配的详细配置:


三、常用的指令和技巧

**代码执行:**在单元格中编写代码可以按 Shift+Enter 执行,能够执行 Python 代码,查看输出和绘图等。

**新建单元格:**在工具栏中点击 + 图标或使用快捷键 Ctrl+M B(在命令模式下)添加新单元格。

**运行所有单元格:**在工具栏中点击 "运行时",选择"全部运行"来运行所有单元格。

**运行选定单元格:**选定单元格后,点击工具栏中的播放按钮或使用快捷键Shift+Enter来运行选中的单元格。

**切换单元格类型:**将单元格切换为代码单元格或 Markdown 单元格,可使用快捷键 Ctrl+M Y(切换到代码)和 Ctrl+M M(切换到 Markdown)。

保存和导出: 使用文件菜单中的保存或下载选项,可以将笔记本保存在 Google 云端硬盘或导出为 .ipynb 文件。

挂载 Google Drive: 使用以下代码挂载 Google Drive,以便访问云端存储的数据。

python 复制代码
from google.colab import drive
drive.mount('/content/drive')

安装库: 使用pip命令安装所需的Python库。

python 复制代码
!pip install library_name

查看文件列表: 使用以下命令查看当前目录下的文件列表。

python 复制代码
!ls

查看GPU信息: 使用以下代码查看Colab分配的GPU信息。

python 复制代码
!nvidia-smi

帮助文档: 在代码后面加上"?"可以查看函数的帮助文档。

python 复制代码
help(function_name)

查看当前目录路径: 使用以下代码查看当前工作目录路径。

python 复制代码
import os print(os.getcwd())

上传文件: 使用以下代码上传本地文件到Colab环境。

python 复制代码
from google.colab import files uploaded = files.upload()

下载文件: 使用以下代码从Colab环境下载文件。

python 复制代码
from google.colab import files files.download('file_name')

设置运行时类型: 在"运行时"菜单中选择"更改运行时类型",可以设置虚拟机的硬件和配置选项。


四、Colab的优势

下面简要列举了一些Colab的优势:

  • 免费的计算资源

    • Colab提供了免费的云端计算资源,让你无需购买昂贵的硬件,就能在云端完成深度学习和数据科学的任务。
    • 无需花费时间和金钱在本地配置庞大的计算环境,Colab为用户提供了免费的计算能力。
  • 便捷的数据存储和共享

    • Colab与Google Drive紧密集成,使得数据的存储和共享变得非常方便。你可以轻松地导入和保存数据,而无需担心本地存储的限制。
    • 在Colab中,你可以直接访问Google Drive中的文件,使得数据管理更加灵活。
  • 简化的环境配置

    • Colab预装了许多常用的深度学习框架(如TensorFlow和PyTorch)和数据科学库,让你能够迅速导入所需的工具。
    • 无需手动安装和配置这些软件,你可以直接专注于你的任务,提高工作效率。
  • GPU和TPU的加速支持

    • Colab支持GPU和TPU的加速,让你能够更高效地处理大规模数据和复杂模型。
    • 这对于深度学习任务来说至关重要,而Colab为用户提供了免费的GPU和TPU资源,让你能够在云端快速训练模型

对于我自己来说,之所以选择使用Colab,主要还是因为现在GPU资源太贵了,动不动大几万。。网上看了很多按小时付费的云GPU,还没有尝试过,下次尝试完,我会继续做新的总结。

相关推荐
Luis Li 的猫猫1 小时前
深度学习中的知识蒸馏
人工智能·经验分享·深度学习·学习·算法
默 语1 小时前
百度搜索融合 DeepSeek 满血版,开启智能搜索新篇
百度·ai·deepseek
木觞清3 小时前
PyTorch与TensorFlow的对比:哪个框架更适合你的项目?
人工智能·pytorch·tensorflow
The god of big data6 小时前
深入探索 DeepSeek 在数据分析与可视化中的应用
ai·数据挖掘·数据分析
wyg_0311136 小时前
用deepseek学大模型04-模型可视化与数据可视化
人工智能·机器学习·信息可视化
陈敬雷-充电了么-CEO兼CTO7 小时前
DeepSeek核心算法解析:如何打造比肩ChatGPT的国产大模型
人工智能·神经网络·自然语言处理·chatgpt·大模型·aigc·deepseek
盼小辉丶8 小时前
TensorFlow深度学习实战(8)——卷积神经网络
深度学习·cnn·tensorflow
南风过闲庭8 小时前
人工智能泡沫效应
大数据·人工智能·科技·搜索引擎·百度·ai
我是一个对称矩阵9 小时前
YOLOv5-Seg 深度解析:与 YOLOv5 检测模型的区别
人工智能·yolo·目标跟踪
AomanHao9 小时前
图像质量评价指标-UCIQE-UIQM
图像处理·人工智能·计算机视觉·评价指标