深度学习-搭建Colab环境

Google Colab(Colaboratory) 是一个免费的云端环境,旨在帮助开发者和研究人员轻松进行机器学习和数据科学工作。它提供了许多优势,使得编写、执行和共享代码变得更加简单和高效。Colab 在云端提供了预配置的环境,可以直接开始编写代码,并且提供了免费的 GPU 和 TPU 资源,这对于训练深度学习模型等计算密集型任务非常有帮助,可以加速模型训练过程。

一、Colab网站介绍

Google Colab(Colaboratory) 是一个免费的云端环境,旨在帮助开发者和研究人员轻松进行机器学习和数据科学工作。可以在Colab官网上直接新建代码文件并运行,Colab 在云端提供了预配置的Python环境,免费的GPU和TPU资源,这有助于加速计算密集型任务,如深度学习模型的训练。


二、Colab 分配GPU/CPU/TPU

点击右上角分配,分配服务器资源。

输入 Python 代码:

python 复制代码
!nvidia-smi

可以查看被分配的详细配置:


三、常用的指令和技巧

**代码执行:**在单元格中编写代码可以按 Shift+Enter 执行,能够执行 Python 代码,查看输出和绘图等。

**新建单元格:**在工具栏中点击 + 图标或使用快捷键 Ctrl+M B(在命令模式下)添加新单元格。

**运行所有单元格:**在工具栏中点击 "运行时",选择"全部运行"来运行所有单元格。

**运行选定单元格:**选定单元格后,点击工具栏中的播放按钮或使用快捷键Shift+Enter来运行选中的单元格。

**切换单元格类型:**将单元格切换为代码单元格或 Markdown 单元格,可使用快捷键 Ctrl+M Y(切换到代码)和 Ctrl+M M(切换到 Markdown)。

保存和导出: 使用文件菜单中的保存或下载选项,可以将笔记本保存在 Google 云端硬盘或导出为 .ipynb 文件。

挂载 Google Drive: 使用以下代码挂载 Google Drive,以便访问云端存储的数据。

python 复制代码
from google.colab import drive
drive.mount('/content/drive')

安装库: 使用pip命令安装所需的Python库。

python 复制代码
!pip install library_name

查看文件列表: 使用以下命令查看当前目录下的文件列表。

python 复制代码
!ls

查看GPU信息: 使用以下代码查看Colab分配的GPU信息。

python 复制代码
!nvidia-smi

帮助文档: 在代码后面加上"?"可以查看函数的帮助文档。

python 复制代码
help(function_name)

查看当前目录路径: 使用以下代码查看当前工作目录路径。

python 复制代码
import os print(os.getcwd())

上传文件: 使用以下代码上传本地文件到Colab环境。

python 复制代码
from google.colab import files uploaded = files.upload()

下载文件: 使用以下代码从Colab环境下载文件。

python 复制代码
from google.colab import files files.download('file_name')

设置运行时类型: 在"运行时"菜单中选择"更改运行时类型",可以设置虚拟机的硬件和配置选项。


四、Colab的优势

下面简要列举了一些Colab的优势:

  • 免费的计算资源

    • Colab提供了免费的云端计算资源,让你无需购买昂贵的硬件,就能在云端完成深度学习和数据科学的任务。
    • 无需花费时间和金钱在本地配置庞大的计算环境,Colab为用户提供了免费的计算能力。
  • 便捷的数据存储和共享

    • Colab与Google Drive紧密集成,使得数据的存储和共享变得非常方便。你可以轻松地导入和保存数据,而无需担心本地存储的限制。
    • 在Colab中,你可以直接访问Google Drive中的文件,使得数据管理更加灵活。
  • 简化的环境配置

    • Colab预装了许多常用的深度学习框架(如TensorFlow和PyTorch)和数据科学库,让你能够迅速导入所需的工具。
    • 无需手动安装和配置这些软件,你可以直接专注于你的任务,提高工作效率。
  • GPU和TPU的加速支持

    • Colab支持GPU和TPU的加速,让你能够更高效地处理大规模数据和复杂模型。
    • 这对于深度学习任务来说至关重要,而Colab为用户提供了免费的GPU和TPU资源,让你能够在云端快速训练模型

对于我自己来说,之所以选择使用Colab,主要还是因为现在GPU资源太贵了,动不动大几万。。网上看了很多按小时付费的云GPU,还没有尝试过,下次尝试完,我会继续做新的总结。

相关推荐
yusaisai大鱼3 分钟前
tensorflow_probability与tensorflow版本依赖关系
人工智能·python·tensorflow
18号房客4 分钟前
一个简单的深度学习模型例程,使用Keras(基于TensorFlow)构建一个卷积神经网络(CNN)来分类MNIST手写数字数据集。
人工智能·深度学习·机器学习·生成对抗网络·语言模型·自然语言处理·tensorflow
神秘的土鸡11 分钟前
神经网络图像隐写术:用AI隐藏信息的艺术
人工智能·深度学习·神经网络
数据分析能量站12 分钟前
神经网络-LeNet
人工智能·深度学习·神经网络·机器学习
Jaly_W20 分钟前
用于航空发动机故障诊断的深度分层排序网络
人工智能·深度学习·故障诊断·航空发动机
小嗷犬23 分钟前
【论文笔记】Cross-lingual few-shot sign language recognition
论文阅读·人工智能·多模态·少样本·手语翻译
夜幕龙29 分钟前
iDP3复现代码数据预处理全流程(二)——vis_dataset.py
人工智能·python·机器人
吃个糖糖1 小时前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂1 小时前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者1 小时前
【pytorch】循环神经网络
人工智能·pytorch