深度学习-搭建Colab环境

Google Colab(Colaboratory) 是一个免费的云端环境,旨在帮助开发者和研究人员轻松进行机器学习和数据科学工作。它提供了许多优势,使得编写、执行和共享代码变得更加简单和高效。Colab 在云端提供了预配置的环境,可以直接开始编写代码,并且提供了免费的 GPU 和 TPU 资源,这对于训练深度学习模型等计算密集型任务非常有帮助,可以加速模型训练过程。

一、Colab网站介绍

Google Colab(Colaboratory) 是一个免费的云端环境,旨在帮助开发者和研究人员轻松进行机器学习和数据科学工作。可以在Colab官网上直接新建代码文件并运行,Colab 在云端提供了预配置的Python环境,免费的GPU和TPU资源,这有助于加速计算密集型任务,如深度学习模型的训练。


二、Colab 分配GPU/CPU/TPU

点击右上角分配,分配服务器资源。

输入 Python 代码:

python 复制代码
!nvidia-smi

可以查看被分配的详细配置:


三、常用的指令和技巧

**代码执行:**在单元格中编写代码可以按 Shift+Enter 执行,能够执行 Python 代码,查看输出和绘图等。

**新建单元格:**在工具栏中点击 + 图标或使用快捷键 Ctrl+M B(在命令模式下)添加新单元格。

**运行所有单元格:**在工具栏中点击 "运行时",选择"全部运行"来运行所有单元格。

**运行选定单元格:**选定单元格后,点击工具栏中的播放按钮或使用快捷键Shift+Enter来运行选中的单元格。

**切换单元格类型:**将单元格切换为代码单元格或 Markdown 单元格,可使用快捷键 Ctrl+M Y(切换到代码)和 Ctrl+M M(切换到 Markdown)。

保存和导出: 使用文件菜单中的保存或下载选项,可以将笔记本保存在 Google 云端硬盘或导出为 .ipynb 文件。

挂载 Google Drive: 使用以下代码挂载 Google Drive,以便访问云端存储的数据。

python 复制代码
from google.colab import drive
drive.mount('/content/drive')

安装库: 使用pip命令安装所需的Python库。

python 复制代码
!pip install library_name

查看文件列表: 使用以下命令查看当前目录下的文件列表。

python 复制代码
!ls

查看GPU信息: 使用以下代码查看Colab分配的GPU信息。

python 复制代码
!nvidia-smi

帮助文档: 在代码后面加上"?"可以查看函数的帮助文档。

python 复制代码
help(function_name)

查看当前目录路径: 使用以下代码查看当前工作目录路径。

python 复制代码
import os print(os.getcwd())

上传文件: 使用以下代码上传本地文件到Colab环境。

python 复制代码
from google.colab import files uploaded = files.upload()

下载文件: 使用以下代码从Colab环境下载文件。

python 复制代码
from google.colab import files files.download('file_name')

设置运行时类型: 在"运行时"菜单中选择"更改运行时类型",可以设置虚拟机的硬件和配置选项。


四、Colab的优势

下面简要列举了一些Colab的优势:

  • 免费的计算资源

    • Colab提供了免费的云端计算资源,让你无需购买昂贵的硬件,就能在云端完成深度学习和数据科学的任务。
    • 无需花费时间和金钱在本地配置庞大的计算环境,Colab为用户提供了免费的计算能力。
  • 便捷的数据存储和共享

    • Colab与Google Drive紧密集成,使得数据的存储和共享变得非常方便。你可以轻松地导入和保存数据,而无需担心本地存储的限制。
    • 在Colab中,你可以直接访问Google Drive中的文件,使得数据管理更加灵活。
  • 简化的环境配置

    • Colab预装了许多常用的深度学习框架(如TensorFlow和PyTorch)和数据科学库,让你能够迅速导入所需的工具。
    • 无需手动安装和配置这些软件,你可以直接专注于你的任务,提高工作效率。
  • GPU和TPU的加速支持

    • Colab支持GPU和TPU的加速,让你能够更高效地处理大规模数据和复杂模型。
    • 这对于深度学习任务来说至关重要,而Colab为用户提供了免费的GPU和TPU资源,让你能够在云端快速训练模型

对于我自己来说,之所以选择使用Colab,主要还是因为现在GPU资源太贵了,动不动大几万。。网上看了很多按小时付费的云GPU,还没有尝试过,下次尝试完,我会继续做新的总结。

相关推荐
Dontla40 分钟前
ChatGPT键盘快捷键(按ctrl + /呼出)
ai
用户691581141651 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141651 小时前
Ascend C的编程模型
人工智能
-Nemophilist-1 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架