Go 知识chan

Go 知识chan

  • [1. 基本知识](#1. 基本知识)
    • [1.1 定义](#1.1 定义)
    • [1.2 操作](#1.2 操作)
    • [1.3 操作限定](#1.3 操作限定)
    • [1.4 chan 读写](#1.4 chan 读写)
  • [2. 原理](#2. 原理)
    • [2.1 数据结构](#2.1 数据结构)
    • [2.2 环形队列](#2.2 环形队列)
    • [2.3 等待队列](#2.3 等待队列)
    • [2.4 类型消息](#2.4 类型消息)
    • [2.5 读写数据](#2.5 读写数据)
    • [2.6 关闭chan](#2.6 关闭chan)
  • [3. 使用](#3. 使用)
    • [3.1 操作符使用](#3.1 操作符使用)
    • [3.2 select](#3.2 select)
    • [3.3 for-range](#3.3 for-range)

https://a18792721831.github.io/

1. 基本知识

chan是go里面里面提供的语言层面的协程间的通信方式,用于并发通信。

1.1 定义

  • 变量声明: var ch chan int // 声明一个int型的chan
    这种方式声明的chan,值为nil。并且每一种chan只能有一种类型。
  • make声明: ch1 := make(chan int)// 无缓存的chanch2 := make(chan int, 4)// 有缓冲的chan

1.2 操作

操作符<-表示数据流向,当chan在<-左边,表示数据流向chan,也就是向chan写入数据;当chan在<-右边,表示数据流出chan,

也就是从chan读取数据。

Go 复制代码
func TestChanOne(t *testing.T) {
	var ch chan int
	ch = make(chan int) // 无缓冲chan
	go func() {         // 创建一个协程,不断从chan中读取数据
		<-ch
	}()
	ch <- 1 // 写入数据,因为没有缓冲,如果没有上面那句,这句会阻塞

	var ch1 chan int
	ch1 = make(chan int, 1) // 有缓冲chan
	ch1 <- 2                // 因为有缓存,所以这句不会阻塞,但是因为缓冲长度是1,所以在写入就会阻塞
	fmt.Printf("len=%d, cap=%d\n", len(ch1), cap(ch1))
	fmt.Println(<-ch1) // 读取数据,因为有缓冲,并且有数据,所以不会阻塞
}

执行结果:

1.3 操作限定

默认的chan为双向可读写,chan在函数间传递的时候,可以使用操作符限制chan的读写。

Go 复制代码
func ChanRW(ch chan int) {
	ch <- 1
	<-ch
}

func ChanR(ch <-chan int) {
	ch <- 1
	<-ch
}

func ChanW(ch chan<- int) {
	ch <- 1
	<-ch
}

1.4 chan 读写

chan无缓冲时,从chan读取数据会阻塞,直到有协程向chan写入数据。向chan写入数据也会阻塞,直到有协程读取数据。

chan有缓冲时,从chan读取数据,如果缓冲区中没有数据,那么也会阻塞,直到有协程写入数据。向chan写入数据,如果缓冲区已经满了,也会阻塞,直到有协程从chan中读取数据。

对于nil的chan,不管是读还是写,都是永久阻塞。 -- 这个一定注意。

使用内置函数close可以关闭chan,尝试向关闭的chan写入数据会触发panic,但是仍然可以读取。

chan读取最多可以给两个变量赋值:

Go 复制代码
  i := <- ch
  j, ok := <- ch

第一个变量表示读取的值,第二个变量表示是否成功读取了数据。第二个变量不表示chan是否关闭。

对于关闭的有缓冲的chan存在两种情况:1. 缓冲区中没有数据; 2. 缓冲区中有数据。

对于有缓冲的chan并且用内置函数close进行关闭,在继续读取,针对缓冲区中没有数据,读取的第一个值是该类型的零值,第二个值为false,表示没有成功读取数据。

如果缓冲区中存在数据,那么第一个值是缓冲区中的第一个数据,第二个值是true,表示正确读取到数据。

也就是说,只有缓冲区中没有数据了,第二个值才能代表chan已经关闭。

当chan没有缓冲区的时候,第二个值可以认为是chan的关闭状态。

2. 原理

2.1 数据结构

在源码包的src/runtime/chan.go中定义了chan的结构:

Go 复制代码
type hchan struct {
	qcount   uint           // 当前队列中剩余的元素个数
	dataqsiz uint           // 环形队列的长度,即可以存放的元素个数
	buf      unsafe.Pointer // 环形队列指针
	elemsize uint16         // 每个元素的大小
	closed   uint32         // 关闭状态
	elemtype *_type         // 元素类型
	sendx    uint           // 写入位置
	recvx    uint           // 读取位置
	recvq    waitq          // 阻塞读协程队列
	sendq    waitq          // 阻塞写协程队列
	lock     mutex          // 互斥锁
}

可以看出,一个chan基本上由数据缓冲,类型信息,和协程等待队列组成。

2.2 环形队列

环形队列主要是存储缓冲数据的,其实实现一个缓冲队列非常简单,只需要一个数组就能实现,每次数组指针到达最后一个元素,那么就重置为0即可。

Go 复制代码
	var data []int
	data = make([]int, 10)
	for i := 0; i < 100; i++ {
		data[i] = i
		if i == len(data)-1 {
			i = 0
		}
	}

上面的if就是实现了环形队列,所以名字叫做环形队列,实际上可能是线性的结构。

在chan中使用双指针实现读取和写入数据,读指针表示读取的元素位置,写指针表示写入的元素位置。

当读指针等于写指针的时候,表示数据读取完毕,整个队列为空。

当写指针等于读指针的时候,表示队列满,无法写入。

2.3 等待队列

因为同一个chan可以传给多个协程,就会出现多个协程等待读取的情况;对于写数据也是相同的,那么此时就会根据先后顺序,组成等待队列,等待的协程组成了读阻塞队列和写阻塞队列。

当对chan进行写操作,那么唤醒读队列的协程;当对chan进行读操作,那么唤醒写队列的协程。

对于chan进行写操作,如果读协程队列为空,那么写操作阻塞;对于chan进行读操作,如果写协程队列为空,那么读操作阻塞。

需要注意,上述情况还有一个附件条件:无缓冲chan,如果是有缓冲chan,那么对于写操作,缓冲区满,对于读操作,缓冲区空。

2.4 类型消息

在chan的定义中,保存了类型消息和类型长度,类型消息主要是传递过程中赋值,类型长度主要是计算缓冲区中元素的位置。

2.5 读写数据

对于chan读写数据,实际上就是数据进入缓冲区和读出缓冲区的操作。

在实现上则存在一定的技巧:

写入数据时,如果读协程等待队列不为空,那么直接将数据给读协程等待队列的第一个协程即可,不进行数据缓冲区的数据写入,然后在唤醒,最后读取的操作,避免了数据的额外处理。

同样的,读取数据时,需要甄别一下,因为chan本质上是队列,需要符合先入先出的规则,在写入数据时,因为chan为空,所以不管有没有缓冲区,都可以直接将数据交给等待的读取协程。

但是在读取数据的时候,如果存在缓冲区,那么就必须从缓冲区中读取,读取数据后,环形写入协程等待队列,将数据写入缓冲区的队尾。

只有无缓冲区的chan,才可以直接从写等待协程队列中唤醒协程,并将数据直接交给读取协程。

2.6 关闭chan

关闭chan的时候,会将读等待队列和写等待队列的全部协程都唤醒。

对于读等待的协程,赋值该类型的零值,并且将第二个值赋值为false。

需要注意,对于chan,不会同时既存在读等待队列协程,又存在写等待队列协程。(长时间同时,瞬时的同时可能存在)

对于写等待的协程,直接触发panic,向close的chan写入数据,直接panic。

除此之外,这些操作也会panic:

  • 关闭nil的chan
  • 关闭已经关闭的chan
  • 向已经关闭的chan写入数据

3. 使用

3.1 操作符使用

使用<-进行操作,同时也可以限制在当前函数范围内chan的操作方式,读还是写,还是读写。

3.2 select

对于chan的使用,不管是读取还是写入,非常导致阻塞,但是很多时候,我们又不希望整个程序阻塞,因为是并发的,可能当前chan没有数据,但是别的chan可能有数据,那么就可以在等待一个chan的时候,处理其他chan的数据,增加程序的性能。

使用select就可以实现监控多个chan。

Go 复制代码
	sayOne := make(chan string)
	sayTwo := make(chan string)
	// 每两秒发送 one
	go func() {
		for {
			sayOne <- "one"
			time.Sleep(2 * time.Second)
		}
	}()
	// 每两秒发送 two
	go func() {
		for {
			sayTwo <- "tow"
			time.Sleep(2 * time.Second)
		}
	}()
	for {
		// 如果 select 中的任何 case 都没有触发,那么 select 本身是会阻塞的,直到某个 case 触发
		select {
		case msg := <-sayOne:
			fmt.Println(msg)
		case msg := <-sayTwo:
			fmt.Println(msg)
		// 但是因为 select 触发的 case 是随机的,所以这里可能并不会正确执行第三个case 	
		case <-time.After(10 * time.Second):
			return
		}
	}

要想按照程序10秒后退出,可以使用定时器进行超时退出:

Go 复制代码
	// 设置超时
	time.AfterFunc(10*time.Second, func() {
		os.Exit(0)
	})

除此之外,还可以使用default进行计时,然后进行超时退出操作。

Go 复制代码
	sayOne := make(chan string)
	sayTwo := make(chan string)
	// 每两秒发送 one
	go func() {
		for {
			sayOne <- "one"
			time.Sleep(2 * time.Second)
		}
	}()
	// 每两秒发送 two
	go func() {
		for {
			sayTwo <- "tow"
			time.Sleep(2 * time.Second)
		}
	}()
	// 设置超时
	//time.AfterFunc(10*time.Second, func() {
	//	os.Exit(0)
	//})
	tm := 0
	for {
		// 如果 select 中的任何 case 都没有触发,那么 select 本身是会阻塞的,直到某个 case 触发
		select {
		case msg := <-sayOne:
			fmt.Println(msg)
		case msg := <-sayTwo:
			fmt.Println(msg)
			// 但是因为 select 触发的 case 是随机的,所以这里可能并不会正确执行第三个case
		//case <-time.After(10 * time.Second):
		//	return
		default:
			if tm == 10 {
				return
			}
			time.Sleep(time.Second)
			tm++
		}
	}

3.3 for-range

使用<-操作符可以读取数据,除了使用<-操作符,还可以使用for-range进行数据的读取,就像读取一个数组一样。

Go 复制代码
	ch := make(chan int, 10)
	for i := 0; i < 10; i++ {
		ch <- i
	}
	for i := range ch {
		fmt.Println(i)
	}

使用for-range还有个好处,就是读取的数据都是成功的,不用去考虑数据是否读取成功,同时也不用考虑当chan关闭,当chan关闭后,for-range也能正确的处理。

Go 复制代码
	ch := make(chan int, 10)
	for i := 0; i < 10; i++ {
		ch <- i
	}
	// 5秒后关闭chan
	time.AfterFunc(5*time.Second, func() {
		close(ch)
	})
	// 每一秒读取一个元素
	for i := range ch {
		fmt.Println(i)
		time.Sleep(time.Second)
	}

即使第5秒的时候,chan被关闭了,也可以正确的读取全部的数据。

相关推荐
我是前端小学生5 小时前
Go语言中的方法和函数
go
探索云原生9 小时前
在 K8S 中创建 Pod 是如何使用到 GPU 的: nvidia device plugin 源码分析
ai·云原生·kubernetes·go·gpu
hkNaruto12 小时前
【P2P】【Go】采用go语言实现udp hole punching 打洞 传输速度测试 ping测试
golang·udp·p2p
入 梦皆星河12 小时前
go中常用的处理json的库
golang
bufanjun00113 小时前
JUC并发工具---ThreadLocal
java·jvm·面试·并发·并发基础
海绵波波10714 小时前
Gin-vue-admin(2):项目初始化
vue.js·golang·gin
每天写点bug14 小时前
【go每日一题】:并发任务调度器
开发语言·后端·golang
一个不秃头的 程序员14 小时前
代码加入SFTP Go ---(小白篇5)
开发语言·后端·golang
基哥的奋斗历程15 小时前
初识Go语言
开发语言·后端·golang
自在的LEE15 小时前
当 Go 遇上 Windows:15.625ms 的时间更新困局
后端·kubernetes·go