强化学习原理python篇06——DQN

强化学习原理python篇05------DQN

本章全篇参考赵世钰老师的教材 Mathmatical-Foundation-of-Reinforcement-Learning Deep Q-learning 章节,请各位结合阅读,本合集只专注于数学概念的代码实现。

DQN 算法

1)使用随机权重 ( w ← 1.0 ) (w←1.0) (w←1.0)初始化目标网络 Q ( s , a , w ) Q(s, a, w) Q(s,a,w)和网络 Q ^ ( s , a , w ) \hat Q(s, a, w) Q^(s,a,w), Q Q Q和 Q ^ \hat Q Q^相同,清空回放缓冲区。

2)以概率ε选择一个随机动作a,否则 a = a r g m a x Q ( s , a , w ) a=argmaxQ(s,a,w) a=argmaxQ(s,a,w)。

3)在模拟器中执行动作a,观察奖励r和下一个状态s'。

4)将转移过程(s, a, r, s')存储在回放缓冲区中。

5)从回放缓冲区中采样一个随机的小批量转移过程。

6)对于回放缓冲区中的每个转移过程,如果片段在此步结束,则计算目标 y = r y=r y=r,否则计算 y = r + γ m a x Q ^ ( s , a , w ) y=r+\gamma max \hat Q(s, a, w) y=r+γmaxQ^(s,a,w) 。

7)计算损失: L = ( Q ( s , a , w ) -- y ) 2 L=(Q(s, a, w)--y)^2 L=(Q(s,a,w)--y)2。

8)固定网络 Q ^ ( s , a , w ) \hat Q(s, a, w) Q^(s,a,w)不变,通过最小化模型参数的损失,使用SGD算法更新 Q ( s , a ) Q(s, a) Q(s,a)。

9)每N步,将权重从目标网络 Q Q Q复制到 Q ^ ( s , a , w ) \hat Q(s, a, w) Q^(s,a,w) 。

10)从步骤2开始重复,直到收敛为止。

定义DQN网络

python 复制代码
import collections
import copy
import random
from collections import defaultdict
import math
import gym
import gym.spaces
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from gym.envs.toy_text import frozen_lake
from torch.utils.tensorboard import SummaryWriter

class Net(nn.Module):
    def __init__(self, obs_size, hidden_size, q_table_size):
        super(Net, self).__init__()

        self.net = nn.Sequential(
            # 输入为状态,样本为(1*n)
            nn.Linear(obs_size, hidden_size),
            nn.ReLU(),
            # nn.Linear(hidden_size, hidden_size),
            # nn.ReLU(),
            nn.Linear(hidden_size, q_table_size),
        )

    def forward(self, state):
        return self.net(state)


class DQN:
    def __init__(self, env, tgt_net, net):
        self.env = env
        self.tgt_net = tgt_net
        self.net = net

    def generate_train_data(self, batch_size, epsilon):

        state, _ = env.reset()
        train_data = []
        while len(train_data)<batch_size*2:
            q_table_tgt = self.tgt_net(torch.Tensor(state)).detach()
            if np.random.uniform(0, 1, 1) > epsilon:
                action = self.env.action_space.sample()
            else:
                action = int(torch.argmax(q_table_tgt))
            new_state, reward,terminated, truncted, info = env.step(action)
            train_data.append([state, action, reward, new_state, terminated])
            state = new_state
            if terminated:
                state, _ = env.reset()
                continue
        random.shuffle(train_data)                
        return train_data[:batch_size]

    def calculate_y_hat_and_y(self, batch):
        # 6)对于回放缓冲区中的每个转移过程,如果片段在此步结束,则计算目标$y=r$,否则计算$y=r+\gamma max \hat Q(s, a, w)$ 。
        y = []
        state_space = []
        action_space = []
        for state, action, reward, new_state, terminated in batch:
            # y值
            if terminated:
                y.append(reward)
            else:
                # 下一步的 qtable 的最大值
                q_table_net = self.net(torch.Tensor(np.array([new_state]))).detach()
                y.append(reward + gamma * float(torch.max(q_table_net)))
            # y hat的值
            state_space.append(state)
            action_space.append(action)
        idx = [list(range(len(action_space))), action_space]
        y_hat = self.tgt_net(torch.Tensor(np.array(state_space)))[idx]
        return y_hat, torch.tensor(y)

    def update_net_parameters(self, update=True):
        self.net.load_state_dict(self.tgt_net.state_dict())
      

初始化环境

python 复制代码
   # 初始化环境
env = gym.make("CartPole-v1")
# env = DiscreteOneHotWrapper(env)

hidden_num = 64
# 定义网络
net = Net(env.observation_space.shape[0],hidden_num, env.action_space.n)
tgt_net = Net(env.observation_space.shape[0],hidden_num, env.action_space.n)
dqn = DQN(env=env, net=net, tgt_net=tgt_net)

# 初始化参数
# dqn.init_net_and_target_net_weight()

# 定义优化器
opt = optim.Adam(tgt_net.parameters(), lr=0.001)


# 定义损失函数
loss = nn.MSELoss()

# 记录训练过程
# writer = SummaryWriter(log_dir="logs/DQN", comment="DQN")

开始训练

python 复制代码
gamma = 0.8
for i in range(10000):
    batch = dqn.generate_train_data(256, 0.8)
    y_hat, y = dqn.calculate_y_hat_and_y(batch)
    opt.zero_grad()
    l = loss(y_hat, y)
    l.backward()
    opt.step()

    print("MSE: {}".format(l.item()))
    if i % 5 == 0:
        dqn.update_net_parameters(update=True)

输出:

复制代码
MSE: 0.027348674833774567
MSE: 0.1803671419620514
MSE: 0.06523636728525162
MSE: 0.08363766968250275
MSE: 0.062360599637031555
MSE: 0.004909628536552191
MSE: 0.05730309337377548
MSE: 0.03543371334671974
MSE: 0.08458714932203293

可视化结果

python 复制代码
env = gym.make("CartPole-v1", render_mode = "human")
env = gym.wrappers.RecordVideo(env, video_folder="video")

state, info = env.reset()
total_rewards = 0

while True:
    q_table_state = dqn.tgt_net(torch.Tensor(state)).detach()
    # if np.random.uniform(0, 1, 1) > 0.9:
    #     action = env.action_space.sample()
    # else:
    action = int(torch.argmax(q_table_state))
    state, reward, terminated, truncted, info = env.step(action)
    if terminated:
        break
          
相关推荐
无限进步_2 分钟前
C语言字符串连接实现详解:掌握自定义strcat函数
c语言·开发语言·c++·后端·算法·visual studio
Han.miracle3 分钟前
Java的多线程——多线程(二)
java·开发语言·线程·多线程
云和数据.ChenGuang7 分钟前
tensorflow的广播机制
人工智能·python·tensorflow
阿登林12 分钟前
Unity3D与Three.js构建3D可视化模型技术对比分析
开发语言·javascript·3d
咕白m62515 分钟前
使用 Python 轻松实现 Excel 转 PDF 全指南
python
CodeCraft Studio20 分钟前
MPP文件处理组件Aspose.Tasks教程:使用Python在Excel中打开MPP文件
python·ui·excel·csv·mpp·aspose·ms project
王六岁26 分钟前
🐍 前端开发 0 基础学 Python 入门指南:f-strings 篇
前端·javascript·python
清空mega30 分钟前
从零开始搭建 flask 博客(1)实验
后端·python·flask
cherryc_36 分钟前
JavaSE基础——第十二章 集合
java·开发语言
集成显卡1 小时前
Bun.js + Elysia 框架实现基于 SQLITE3 的简单 CURD 后端服务
开发语言·javascript·sqlite·bun.js