nltk关键字抽取与轻量级搜索引擎(Whoosh, ElasticSearcher)

背景

有时候你想用一句完整的话或一个文本在基于关键字的搜索引擎里搜索,但是如果把整个文本放进去搜索的话,效果不是很好,因为你的搜索引擎是基于关键字而不是sematic search。那怎么抽取关键字呢?

利用NLTK抽取关键的代码

python 复制代码
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist

# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')

def extract_keywords(text):
    # Tokenize the text
    words = word_tokenize(text)

    # Remove stopwords
    stop_words = set(stopwords.words('english'))
    filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words]
    print('filtered words:', filtered_words)
    # Calculate word frequency
    freq_dist = FreqDist(filtered_words)

    # Extract keywords based on frequency or other criteria
    keywords = [word for word, freq in freq_dist.most_common(10)]  # Adjust the number of keywords as needed

    return keywords

if __name__ == '__main__':
    text = """
    Elasticsearch provides powerful search capabilities and is commonly used in production environments for large-scale document search and retrieval. However, it might be overkill for small projects or scenarios where simpler solutions like Whoosh are sufficient. Choose the solution that best fits your needs.
    """
    keywords = extract_keywords(text)
    print(keywords)

执行结果

python 复制代码
filtered words: ['elasticsearch', 'provides', 'powerful', 'search', 'capabilities', 'commonly', 'used', 'production', 'environments', 'document', 'search', 'retrieval', 'however', 'might', 'overkill', 'small', 'projects', 'scenarios', 'simpler', 'solutions', 'like', 'whoosh', 'sufficient', 'choose', 'solution', 'best', 'fits', 'needs']
['search', 'elasticsearch', 'provides', 'powerful', 'capabilities', 'commonly', 'used', 'production', 'environments', 'document']

基于关键的搜索-whoosh

python 复制代码
from keywords_extractor import *

from whoosh.fields import Schema, TEXT
from whoosh.index import create_in, open_dir
from whoosh.qparser import QueryParser

# Define the schema for the index
schema = Schema(question=TEXT(stored=True))

# Create or open the index
INDEX_DIR = "indexdir"
ix = create_in(INDEX_DIR, schema)  # Use create_in for creating a new index or open_dir for opening an existing one

# Index your documents (replace doc_content with the actual content of your documents)
writer = ix.writer()
doc_content = "what is angular"

questions = ["How to implement autocomplete, I don't know?", "How does Angular work?", "how Python programming language", "Example question", "Another question"]

for question in questions:
    writer.add_document(question=question)

writer.commit()

# Search using keywords
search_keywords = extract_keywords(doc_content)
query_str = " OR ".join(search_keywords)
print(query_str)

with ix.searcher() as searcher:
    query_parser = QueryParser("question", ix.schema)
    query = query_parser.parse(query_str)
    results = searcher.search(query)

    for result in results:
        print(result)

执行结果

python 复制代码
filtered words: ['angular']
angular
<Hit {'question': 'How does Angular work?'}>
python 复制代码
from elasticsearch import Elasticsearch

# Connect to the Elasticsearch server (make sure it's running)
es = Elasticsearch([{'host': 'localhost', 'port': 9200}])

# Create an index
index_name = "your_index_name"

if not es.indices.exists(index=index_name):
    es.indices.create(index=index_name, ignore=400)

# Index a document (replace doc_content with the actual content of your documents)
doc_content = "This is the content of your document."
document = {"content": doc_content}

es.index(index=index_name, body=document)

# Search using keywords
search_keywords = extract_keywords(doc_content)
query_body = {
    "query": {
        "terms": {
            "content": search_keywords
        }
    }
}

results = es.search(index=index_name, body=query_body)

for hit in results['hits']['hits']:
    print(hit['_source'])
相关推荐
闲人编程9 分钟前
Django中间件开发:从请求到响应的完整处理链
python·中间件·性能优化·django·配置·codecapsule
执笔论英雄12 分钟前
【RL】Slime异步 routout 过程7 AsyncLoopThread
开发语言·python
fj_changing14 分钟前
Ubuntu 22.04部署CosyVoice
人工智能·python·深度学习·ubuntu·ai
z***026014 分钟前
Python大数据可视化:基于大数据技术的共享单车数据分析与辅助管理系统_flask+hadoop+spider
大数据·python·信息可视化
雪域迷影17 分钟前
Python中通过get请求获取api.open-meteo.com网站的天气数据
开发语言·python·php
nix.gnehc17 分钟前
PyTorch基础概念
人工智能·pytorch·python
java1234_小锋20 分钟前
基于Python深度学习的车辆车牌识别系统(PyTorch2卷积神经网络CNN+OpenCV4实现)视频教程 - 通过训练好的模型识别车牌
python·深度学习·cnn·车牌识别
Mr_Xuhhh22 分钟前
pytest -- fixture
开发语言·python·pytest
2301_7951672039 分钟前
Python 高手编程系列九:上下文管理器 — with 语句
数据库·python·mysql
讓丄帝愛伱43 分钟前
excel导出实例
java·python·excel