nltk关键字抽取与轻量级搜索引擎(Whoosh, ElasticSearcher)

背景

有时候你想用一句完整的话或一个文本在基于关键字的搜索引擎里搜索,但是如果把整个文本放进去搜索的话,效果不是很好,因为你的搜索引擎是基于关键字而不是sematic search。那怎么抽取关键字呢?

利用NLTK抽取关键的代码

python 复制代码
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.probability import FreqDist

# Download NLTK resources
nltk.download('punkt')
nltk.download('stopwords')

def extract_keywords(text):
    # Tokenize the text
    words = word_tokenize(text)

    # Remove stopwords
    stop_words = set(stopwords.words('english'))
    filtered_words = [word.lower() for word in words if word.isalnum() and word.lower() not in stop_words]
    print('filtered words:', filtered_words)
    # Calculate word frequency
    freq_dist = FreqDist(filtered_words)

    # Extract keywords based on frequency or other criteria
    keywords = [word for word, freq in freq_dist.most_common(10)]  # Adjust the number of keywords as needed

    return keywords

if __name__ == '__main__':
    text = """
    Elasticsearch provides powerful search capabilities and is commonly used in production environments for large-scale document search and retrieval. However, it might be overkill for small projects or scenarios where simpler solutions like Whoosh are sufficient. Choose the solution that best fits your needs.
    """
    keywords = extract_keywords(text)
    print(keywords)

执行结果

python 复制代码
filtered words: ['elasticsearch', 'provides', 'powerful', 'search', 'capabilities', 'commonly', 'used', 'production', 'environments', 'document', 'search', 'retrieval', 'however', 'might', 'overkill', 'small', 'projects', 'scenarios', 'simpler', 'solutions', 'like', 'whoosh', 'sufficient', 'choose', 'solution', 'best', 'fits', 'needs']
['search', 'elasticsearch', 'provides', 'powerful', 'capabilities', 'commonly', 'used', 'production', 'environments', 'document']

基于关键的搜索-whoosh

python 复制代码
from keywords_extractor import *

from whoosh.fields import Schema, TEXT
from whoosh.index import create_in, open_dir
from whoosh.qparser import QueryParser

# Define the schema for the index
schema = Schema(question=TEXT(stored=True))

# Create or open the index
INDEX_DIR = "indexdir"
ix = create_in(INDEX_DIR, schema)  # Use create_in for creating a new index or open_dir for opening an existing one

# Index your documents (replace doc_content with the actual content of your documents)
writer = ix.writer()
doc_content = "what is angular"

questions = ["How to implement autocomplete, I don't know?", "How does Angular work?", "how Python programming language", "Example question", "Another question"]

for question in questions:
    writer.add_document(question=question)

writer.commit()

# Search using keywords
search_keywords = extract_keywords(doc_content)
query_str = " OR ".join(search_keywords)
print(query_str)

with ix.searcher() as searcher:
    query_parser = QueryParser("question", ix.schema)
    query = query_parser.parse(query_str)
    results = searcher.search(query)

    for result in results:
        print(result)

执行结果

python 复制代码
filtered words: ['angular']
angular
<Hit {'question': 'How does Angular work?'}>
python 复制代码
from elasticsearch import Elasticsearch

# Connect to the Elasticsearch server (make sure it's running)
es = Elasticsearch([{'host': 'localhost', 'port': 9200}])

# Create an index
index_name = "your_index_name"

if not es.indices.exists(index=index_name):
    es.indices.create(index=index_name, ignore=400)

# Index a document (replace doc_content with the actual content of your documents)
doc_content = "This is the content of your document."
document = {"content": doc_content}

es.index(index=index_name, body=document)

# Search using keywords
search_keywords = extract_keywords(doc_content)
query_body = {
    "query": {
        "terms": {
            "content": search_keywords
        }
    }
}

results = es.search(index=index_name, body=query_body)

for hit in results['hits']['hits']:
    print(hit['_source'])
相关推荐
量化投资技术2 分钟前
【量化科普】Liquidity,流动性
python·量化交易·量化·量化投资·qmt·miniqmt
EterNity_TiMe_26 分钟前
【人工智能】蓝耘智算平台盛大发布DeepSeek满血版:开创AI推理体验新纪元
人工智能·python·机器学习·deepseek
顾德拉科1 小时前
使用pyinstaller对gradio和chromadb进行打包
python
java1234_小锋1 小时前
一周学会Flask3 Python Web开发-redirect重定向
前端·python·flask·flask3
重生之我要成为代码大佬1 小时前
Python天梯赛10分题-念数字、求整数段和、比较大小、计算阶乘和
开发语言·数据结构·python·算法
Daitu_Adam1 小时前
Windows11安装GPU版本Pytorch2.6教程
人工智能·pytorch·python·深度学习
阿正的梦工坊1 小时前
Grouped-Query Attention(GQA)详解: Pytorch实现
人工智能·pytorch·python
码界筑梦坊2 小时前
基于Flask的短视频流量数据可视化系统的设计与实现
大数据·python·信息可视化·flask·毕业设计
eso19832 小时前
Spark MLlib使用流程简介
python·算法·spark-ml·推荐算法
dme.3 小时前
Python爬虫基础文件操作
爬虫·python