并查集+巧妙分块,Codeforces1424B. 0-1 MST

目录

一、题目

1、题目描述

2、输入输出

2.1输入

2.2输出

3、原题链接

二、解题报告

1、思路分析

2、复杂度

3、代码详解


一、题目

1、题目描述

Ujan has a lot of useless stuff in his drawers, a considerable part of which are his math notebooks: it is time to sort them out. This time he found an old dusty graph theory notebook with a description of a graph.

It is an undirected weighted graph on n vertices. It is a complete graph: each pair of vertices is connected by an edge. The weight of each edge is either 0 or 1; exactly mm edges have weight 1, and all others have weight 0.

Since Ujan doesn't really want to organize his notes, he decided to find the weight of the minimum spanning tree of the graph. (The weight of a spanning tree is the sum of all its edges.) Can you find the answer for Ujan so he stops procrastinating?

2、输入输出

2.1输入

The first line of the input contains two integers n and m (1≤n≤10^5, 0≤m≤min(n*(n−1)/2,10^5)), the number of vertices and the number of edges of weight 1 in the graph.

The i-th of the next m lines contains two integers ai and bi (1≤ai,bi≤n, ai≠bi), the endpoints of the i-th edge of weight 1.

It is guaranteed that no edge appears twice in the input.

2.2输出

Output a single integer, the weight of the minimum spanning tree of the graph.

3、原题链接

Problem - 1242B - Codeforces (Unofficial mirror by Menci)


二、解题报告

1、思路分析

思来想去只能想到O(n^2)解法,看到大佬一句话点破梦中人了属于是orz。

朴素思想:直接跑生成树------MLE

进一步:无权边连通块数目-1即为答案------如果只能想出O(n^2)解法会TLE

一个特别妙的思路:因为一共有m条带权边,那么只考虑带权边的情况下所有节点的出度入度之和为2*m,那么假如最小度为dmin,那么度为dmin的点不会超过2*m/n!!!(这个不难想

精彩的来了:我们先拿到一个最小度的点,O(n)求出它所在的无权边连通块,那么剩下的点中的无权边连通块的数目即为答案

那么如何求剩下点的无权连通块呢?

剩下的点不超过2*m/n个,我们对于每个点都枚举1~n的所有点,如果两个点之间没有边就合并

这一步骤时间复杂度为O(2*m/n * n) = O(m)!!!

所以我们在O(N+M)的时间内就解决了问题

最坏情况下,如果最小度的点特别多,我们效率仍然是线性的(可以结合n,m的数据范围想一下

2、复杂度

时间复杂度:O(n+m) 空间复杂度:O(m)

3、代码详解

复制代码
cpp 复制代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
const int M = 505;
int n, m, cnt;
bool g[M][N];
struct edge
{
    int u, v;
} edges[N];
int deg[N], minid = 0;
int p[N];
int seq[N], tot = 0, pos[N];
int findp(int x)
{
    return p[x] < 0 ? x : p[x] = findp(p[x]);
}
bool Union(int x, int y)
{
    int px = findp(x), py = findp(y);
    if (px == py)
        return false;
    if (p[px] > p[py])
        swap(px, py);
    p[px] += p[py], p[py] = px;
    return true;
}
bool vis[N];
int main()
{
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    // freopen("in.txt", "r", stdin);
    cin >> n >> m, memset(p, -1, sizeof(p));
    for (int i = 1, u, v; i <= m; ++i)
        cin >> u >> v, edges[i] = {u, v}, ++deg[u], ++deg[v];

    minid = 1;
    for (int i = 2; i <= n; ++i)
        if (deg[i] < deg[minid])
            minid = i;

    for (int i = 1; i <= m; ++i)
    {
        if (edges[i].u == minid)
            vis[edges[i].v] = true;
        if (edges[i].v == minid)
            vis[edges[i].u] = true;
    }
    for (int i = 1; i <= n; ++i)
        if (vis[i])
            seq[++tot] = i, pos[i] = tot;
        else
            Union(i, minid);

    for (int i = 1; i <= m; ++i)
    {
        if (vis[edges[i].u])
            g[pos[edges[i].u]][edges[i].v] = true;
        if (vis[edges[i].v])
            g[pos[edges[i].v]][edges[i].u] = true;
    }
    for (int i = 1; i <= tot; ++i)
        for (int j = 1, u = seq[i]; j <= n; ++j)
            if (g[i][j])
                continue;
            else
                cnt += Union(u, j);

    cout << tot - cnt;
    return 0;
}
相关推荐
HABuo8 小时前
【linux文件系统】磁盘结构&文件系统详谈
linux·运维·服务器·c语言·c++·ubuntu·centos
我在人间贩卖青春9 小时前
C++之多重继承
c++·多重继承
颜酱9 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919109 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878389 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz9 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女10 小时前
TRSV优化2
算法
代码游侠10 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_7634724611 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
阿猿收手吧!11 小时前
【C++】std::promise原理与实战解析
c++