pytorch tril 用法并导出onnx demo

import torch

import torch.nn as nn

import onnxruntime as ort

import numpy as np

def create_tril_onnx():

class SimpleNet(nn.Module):

def init(self):

super(SimpleNet, self).init()

self.data1 = torch.ones((2,3), dtype=torch.bool)

def forward(self, x):

tril_x = torch.tril(x)

tril_x = tril_x.float()

x1 = x.float()

return tril_x+x1

model = SimpleNet()

data = torch.ones((2,3), dtype=torch.bool)

output = model(data)

print("output:")

print(output)

torch.onnx.export(model, data, "tril.onnx", input_names=["input"], output_names=["output"])

def inference_onnx():

model = ort.InferenceSession("tril.onnx", provider=["CPUExecutionProvider"])

outputs = model.run(["output"], {"input":np.random.randn(2,3).astype(np.bool_)})

print("outputs:", outputs)

def my_tril():

key_size = 5

data = torch.ones((key_size,key_size), dtype=torch.bool)

for i in range(key_size):

print("\n")

print(i)

print(data[i,i+1:])

data[i,i+1:] = False

print(data)

print(data)

def main():

create_tril_onnx()

inference_onnx()

my_tril()

if name == "main":

main()


导出onnx如下:

相关推荐
从零开始学习人工智能1 小时前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发1 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习
Msshu1232 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一4 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
DataLaboratory5 小时前
Python爬取百度地图-前端直接获取
爬虫·python·百度地图
ACP广源盛139246256736 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超6 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
Turnsole_y7 小时前
pycharm自动化测试初始化
python·selenium
停停的茶8 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309168 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习