【线性代数与矩阵论】矩阵的酉相似

矩阵的酉相似(合同变换)

2023年11月7日

#algebra


文章目录

  • 矩阵的酉相似(合同变换)
    • [1. 酉矩阵](#1. 酉矩阵)
    • [2. 酉相似](#2. 酉相似)
    • [3. Schur分解定理](#3. Schur分解定理)
    • [4. 正规矩阵](#4. 正规矩阵)
    • [5. 酉相似对角化](#5. 酉相似对角化)
    • [6. Hermit矩阵,反Hermit矩阵及酉矩阵的特性](#6. Hermit矩阵,反Hermit矩阵及酉矩阵的特性)
    • [7. Hermit矩阵的正定性](#7. Hermit矩阵的正定性)
    • 下链

1. 酉矩阵

设 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n ,若 A {A} A 满足
A H A = A A H = I A^ \mathrm HA=AA^ \mathrm H=I AHA=AAH=I

则称 A {A} A 为酉矩阵()。由定义可得
A − 1 = A H A^{-1}=A^ \mathrm H A−1=AH

当 A ∈ R n × n {A\in \mathbb R^{n \times n}} A∈Rn×n ,酉矩阵就是单位正交矩阵
性质 若 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n 是酉矩阵,则

  1. ∣ det ⁡ A ∣ = 1 {|\det A|=1} ∣detA∣=1
  2. A T , A H , A − 1 {A^T,A^H,A^{-1}} AT,AH,A−1 仍为酉矩阵
  3. 若 B {B} B 也是酉矩阵,则 A B {AB} AB 也是酉矩阵

显然,酉矩阵列向量是空间中一组标准正交基,这是酉矩阵的充要条件。


2. 酉相似

设 A , B ∈ C n × n {A,B\in \mathbb C^{n \times n}} A,B∈Cn×n ,若存在酉矩阵 U {U} U 使得
B = U − 1 A U = U H A U B=U^{-1}AU=U^ \mathrm HAU B=U−1AU=UHAU

则称 A {A} A 与 B {B} B 酉相似。
相似变换与逆矩阵有关,相似变换前后的矩阵为相似矩阵。
合同变换与酉矩阵有关,合同变换前后的矩阵为合同矩阵。


3. Schur分解定理

设 ∀ A ∈ C n × n \forall A\in \mathbb C^{n \times n} ∀A∈Cn×n ,若存在酉矩阵 U {U} U 使得
T = U − 1 A U = U H A U = [ λ 1 t 12 ⋯ t 1 n 0 λ 2 ⋱ ⋮ 0 0 ⋱ t ( n − 1 ) n 0 0 0 λ n ] T=U^{-1}AU=U^ \mathrm HAU= \begin{bmatrix} \lambda_1 & t_{12} & \cdots & t_{1n} \\ 0 & \lambda_2 & \ddots & \vdots \\ 0 & 0 & \ddots & t_{(n-1)n}\\ 0 & 0 & 0 & \lambda_n \end{bmatrix} T=U−1AU=UHAU= λ1000t12λ200⋯⋱⋱0t1n⋮t(n−1)nλn

其中 λ 1 , λ 2 , ⋯   , λ n \lambda_1, \lambda_2,\cdots,\lambda_n λ1,λ2,⋯,λn 是 A {A} A 的特征值,即任意 A {A} A 都可酉相似与一个上三角矩阵 T {T} T


4. 正规矩阵

设 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n 满足
A H A = A A H A^ \mathrm HA=AA^ \mathrm H AHA=AAH

则称A为正规矩阵。正规矩阵有以下类型:

  1. 实对称矩阵 A ∈ R n × n , A T = A {A\in \mathbb R^{n \times n}, A^ \mathrm T =A} A∈Rn×n,AT=A
  2. 实反对称矩阵 A ∈ R n × n , A T = − A {A\in \mathbb R^{n \times n}, A^ \mathrm T =-A} A∈Rn×n,AT=−A
  3. 实正交矩阵 A ∈ R n × n , A T A = A A T = I {A\in \mathbb R^{n \times n}, A^ \mathrm T A=AA^ \mathrm T=I} A∈Rn×n,ATA=AAT=I
  4. Hermit矩阵 A ∈ C n × n , A H = A {A\in \mathbb C^{n \times n}, A^ \mathrm H=A} A∈Cn×n,AH=A
  5. 反Hermit矩阵 A ∈ C n × n , A H = − A {A\in \mathbb C^{n \times n}, A^ \mathrm H=-A} A∈Cn×n,AH=−A
  6. 酉矩阵 A ∈ C n × n , A H A = A A H = I {A\in \mathbb C^{n \times n}, A^ \mathrm H A=AA^ \mathrm H}=I A∈Cn×n,AHA=AAH=I

正规矩阵不一定是以上六类矩阵。


5. 酉相似对角化

设 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n ,则A可酉相似对角化的条件是
A H A = A A H A^ \mathrm HA=AA^ \mathrm H AHA=AAH

A为正规矩阵。方法如下:

  1. 求出A的全部特征值,和相应的重数
  2. 对这些特征值求特征向量
  3. 对特征向量做schmidt正交化

6. Hermit矩阵,反Hermit矩阵及酉矩阵的特性

设 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n ,则

  1. A {A} A 是Hermit矩阵    ⟺    \iff ⟺ A {A} A 的特征值全是实数
  2. A {A} A 是反Hermit矩阵    ⟺    \iff ⟺ A {A} A 的特征值是 0 {0} 0 或纯虚数
  3. A {A} A 是酉矩阵    ⟺    \iff ⟺ A {A} A 的特征值的模是 1 {1} 1
  4. λ {\lambda} λ 是 A {A} A 的特征值, x {x} x 是对应 λ { \lambda} λ 的特征向量,则 λ ˉ {\bar \lambda} λˉ 是 A H {A^ \mathrm H} AH 的特征值,对应 λ ˉ {\bar \lambda} λˉ 的特征向量仍为 x {x} x

7. Hermit矩阵的正定性

设 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n 是一个Hermit矩阵,如果
x H A x > 0 , ∀ x ∈ C n , x ≠ 0 x^ \mathrm HAx>0, \forall x\in \mathbb C^{n},x\ne 0 xHAx>0,∀x∈Cn,x=0

则称 A {A} A 是一个正定的Hermit矩阵。

如果
x H A x ≥ 0 , ∀ x ∈ C n , x ≠ 0 x^ \mathrm HAx\ge0, \forall x\in \mathbb C^{n},x\ne 0 xHAx≥0,∀x∈Cn,x=0

则称 A {A} A 是一个半正定的Hermit矩阵。

设 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n 是一个Hermit矩阵,则下述条件等价

  1. A {A} A 是正定的Hermit矩阵
  2. A {A} A 的特征值全为正数
  3. 存在可逆矩阵 P {P} P 使得 A = P H P {A=P^ \mathrm HP} A=PHP
  4. A {A} A 的顺序主子式全为正数

设 A ∈ C n × n {A\in \mathbb C^{n \times n}} A∈Cn×n 是一个Hermit矩阵,则下述条件等价

  1. A {A} A 是半正定的Hermit矩阵
  2. A {A} A 的特征值全为非负数
  3. 存在可逆矩阵 P {P} P 使得 A = P H P {A=P^ \mathrm HP} A=PHP

设 A ∈ C m × n {A\in \mathbb C^{m \times n}} A∈Cm×n ,则

  1. A H A {A^ \mathrm HA} AHA 和 A A H {AA^ \mathrm H} AAH 的特征值全为非负实数
  2. A H A {A^ \mathrm HA} AHA 和 A A H {AA^ \mathrm H} AAH 的非零特征值相同
  3. rank ( A H A ) = rank ( A A H ) = rank ( A ) {\text{rank}( A^ \mathrm HA)= \text{rank}( AA^ \mathrm H)= \text{rank}(A)} rank(AHA)=rank(AAH)=rank(A)

下链


相关推荐
Leweslyh2 小时前
线性代数公式速记手册
笔记·学习·线性代数
彭彭不吃虫子5 小时前
【离散数学】特殊关系的矩阵表示
决策树·机器学习·矩阵
DW_DROME10 小时前
02向量与矩阵方程
线性代数·算法·矩阵
safety_14041 天前
矩阵/矩阵乘法/特征征/特征向量的讲解
线性代数·矩阵
qq_273900231 天前
旋转向量v和旋转矩阵R
人工智能·python·线性代数·矩阵
苏言の狗1 天前
CCF认证202406-01 | 矩阵重塑(其一)
c语言·数据结构·c++·算法·矩阵
WeeJot嵌入式1 天前
线性代数与数据挖掘:人工智能中的核心工具
人工智能·线性代数·数据挖掘
明明真系叻1 天前
第二十二周机器学习笔记:动手深度学习之——线性代数
笔记·深度学习·线性代数·机器学习·1024程序员节
Guofu_Liao2 天前
大语言模型---梯度的简单介绍;梯度的定义;梯度计算的方法
人工智能·语言模型·矩阵·llama
幻风_huanfeng2 天前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理