LSTM时间序列数据训练+预测的基本实现

文章目录

🧡🧡前言🧡🧡

最近数模比赛中经常遇到时间序列预测的问题,奈何在比赛中没有时间细细了解,导致总是匆匆忙忙一个ARIMA时间序列分析就糊弄过去了。趁有空学习和总结一下实现思路。

🧡🧡实现🧡🧡

简单起见,先考虑用一个特征预测Y的情况(即只用标签本身预测)。

数据集

数据集 :Google Stock Prize of 10 years 谷歌股票数据集

下载:https://www.kaggle.com/datasets/parthsojitra/google-stock-prize-of-10-years/data

本次只使用google_stock_train.csv来训练+测试,另一个文件不考虑。

代码流程

导入相关库

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, LSTM
from keras import optimizers
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import time

如下,google_stock_train.csv总共含有2265天,为方便实现过程中的维度计算,这里取前1000天。

python 复制代码
# ================import data file================
df = pd.read_csv('./sample_data/google_stock_train.csv',
                        header=0, parse_dates=[0],
                        index_col=0, usecols=[0, 1])

df_1000=df[:1000]
df_values=df_1000.values # 转成array

归一化处理

python 复制代码
# ================归一化================
scaler = MinMaxScaler(feature_range=(0,1))
scaler.fit(df_values)
df_values=scaler.transform(df_values)

拆分train和test集,并且创建序列数据,如下例子,当look_back=3时,即将每一天的前3天用来预测该天。

python 复制代码
# ================8:2拆分出train和test================
test_spilt_number=round(len(df_values)*0.20) # 8:2 spilt
train=df_values[:-test_spilt_number] # 负号表示倒数
test=df_values[-test_spilt_number:]

# ================将train、test数据凑出序列数据================
look_back=20 # 设置用前多少天预测
def createXY(dataset,look_back): # dataset为array类型, look_back即为利用前多少个数据预测
    dataX = []
    dataY = []
    for i in range(len(dataset)-look_back):
            dataX.append(dataset[i:i+look_back, 0:dataset.shape[1]]) # 从0到20行(不包含20)
            dataY.append(dataset[i,0]) # 第[20]行
    return np.array(dataX),np.array(dataY)

trainX,trainY=createXY(train,look_back) # create 序列数据
testX,testY=createXY(test,look_back)

print("trainX Shape-- ",trainX.shape) # 【samples, step, features】
print("trainY Shape-- ",trainY.shape) # 【samples】
print("testX Shape-- ",testX.shape)
print("testY Shape-- ",testY.shape)

输出结果:可以看到,设置look_back=20时,对于train集(800个样本),可以拆分出780个新样本,每个新样本中由原来的每段20天样本组成,而最后的维度1代表特征数(这里先考虑只包含1列特征,即标签本身)

构建模型(参考别人的,具体细节不是很懂,日后再补一补吧)

python 复制代码
# ================create model================
model = Sequential() # 创建一个序贯模型,可以简单地一层接一层地添加神经网络层
model.add(LSTM(input_dim=1, units=50, return_sequences=True)) # input_dim为样本特征数,units为LSTM单元神经元数,简单理解为输出维度,
                                # return_sequences=True 表示返回完整序列
#model.add(Dropout(0.2)) # 用于在训练过程中随机丢弃部分节点,以防止过拟合。
model.add(LSTM(input_dim=50, units=100, return_sequences=True))
#model.add(Dropout(0.2))
model.add(LSTM(input_dim=100, units=200, return_sequences=True))
#model.add(Dropout(0.2))
model.add(LSTM(300, return_sequences=False)) # return_sequences=True 表示返回一个值,即输出
model.add(Dropout(0.2))
model.add(Dense(100))
model.add(Dense(units=1)) # 添加了一个全连接层,输出维度为1,用于预测目标值
model.add(Activation('relu')) # 激活函数
start = time.time()
model.compile(loss='mean_squared_error', optimizer='Adam') # 损失函数和优化器 
history = model.fit(trainX, trainY, batch_size=64, epochs=50,
                    validation_split=0.1, verbose=2) # 训练
# loss iter
fig1 = plt.figure(figsize=(12, 8))
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

loss迭代图

用testX预测,并将预测结果与testY做对比

python 复制代码
# ================test error================
test_pred_Y = model.predict(testX) # 用testX预测出Y
test_pred_Y = scaler.inverse_transform(test_pred_Y) # 逆归一化
testY_inv = scaler.inverse_transform(testY.reshape(-1,1)) # 将shape:(x,)调整为shape:(x,1)

# test fit with original Dataset
fig2 = plt.figure(figsize=(12, 8))
plt.plot(test_pred_Y, color="green", label='test')
plt.plot(testY_inv, color='blue', label='dataset')
plt.ylabel('price')
plt.xlabel('date')
plt.legend()
plt.show()

趋势比较像,具体数值还有待提高

预测未来50天,思路是先取原数据的最后look_back天(20天),即981-1000天,然后组合这20天样本丢入model中预测第1001天,然后再用982-1001天这20天继续丢入model中预测第1002天,以此类推。

python 复制代码
# ================pred================
pred_future_num=50
# 扩张array,先填入0占位
look_back_data=df_values[-look_back:] # 维度为(look_back,)
for i in range(pred_future_num):
  look_back_data=np.append(look_back_data, 0)
look_back_data=look_back_data.reshape(-1,1) # 维度为(look_back+pred_future_num,1)
# print(look_back_data.shape) 

# pred
for i in range(len(look_back_data)-look_back):
  input_X=look_back_data[i:i+look_back] # 维度为(look_back+pred_future_num,1)
  input_X = np.expand_dims(input_X, axis=0)  # 维度为(1,look_back+pred_future_num,1)
  out_Y=model.predict(input_X)
  look_back_data[i+look_back]=out_Y

look_back_data=scaler.inverse_transform(look_back_data) # 再逆变换
print(look_back_data)

# draw
fig3 = plt.figure(figsize=(12, 8))
days=np.arange(1000-look_back+1, 1000+pred_future_num+1).reshape(-1, 1)
plt.plot(days, look_back_data, label="pred",color='green',linewidth=3)
plt.plot(days, list(df.iloc[1000-look_back:1000+pred_future_num,0]),label="oridata",color='blue',)
plt.legend()
plt.show()

嗯不太成功的模型呜呜呜,可能是原数据取的范围不太有规律,也可能是模型调参啥的问题,后续再看看吧。

大概流程就是这样.

🧡🧡完整代码🧡🧡

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import math
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, LSTM
from keras import optimizers
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import time
# ================import data file================
df = pd.read_csv('./sample_data/google_stock_train.csv',
                        header=0, parse_dates=[0],
                        index_col=0, usecols=[0, 1])

df_1000=df[:1000]
df_values=df_1000.values # 转成array

# ================归一化================
scaler = MinMaxScaler(feature_range=(0,1))
scaler.fit(df_values)
df_values=scaler.transform(df_values)

# ================8:2拆分出train和test================
test_spilt_number=round(len(df_values)*0.20) # 8:2 spilt
train=df_values[:-test_spilt_number] # 负号表示倒数
test=df_values[-test_spilt_number:]

# ================将train、test数据凑出序列数据================
look_back=20 # 设置用前多少天预测
def createXY(dataset,look_back): # dataset为array类型, look_back即为利用前多少个数据预测
    dataX = []
    dataY = []
    for i in range(len(dataset)-look_back):
            dataX.append(dataset[i:i+look_back, 0:dataset.shape[1]]) # 从0到20行(不包含20)
            dataY.append(dataset[i,0]) # 第[20]行
    return np.array(dataX),np.array(dataY)

trainX,trainY=createXY(train,look_back) # create 序列数据
testX,testY=createXY(test,look_back)

print("trainX Shape-- ",trainX.shape) # 【samples, step, features】
print("trainY Shape-- ",trainY.shape) # 【samples】
print("testX Shape-- ",testX.shape)
print("testY Shape-- ",testY.shape)

# ================create model================
model = Sequential() # 创建一个序贯模型,可以简单地一层接一层地添加神经网络层
model.add(LSTM(input_dim=1, units=50, return_sequences=True)) # input_dim为样本特征数,units为LSTM单元神经元数,简单理解为输出维度,
                                # return_sequences=True 表示返回完整序列
#model.add(Dropout(0.2)) # 用于在训练过程中随机丢弃部分节点,以防止过拟合。
model.add(LSTM(input_dim=50, units=100, return_sequences=True))
#model.add(Dropout(0.2))
model.add(LSTM(input_dim=100, units=200, return_sequences=True))
#model.add(Dropout(0.2))
model.add(LSTM(300, return_sequences=False)) # return_sequences=True 表示返回一个值,即输出
model.add(Dropout(0.2))
model.add(Dense(100))
model.add(Dense(units=1)) # 添加了一个全连接层,输出维度为1,用于预测目标值
model.add(Activation('relu')) # 激活函数
start = time.time()
model.compile(loss='mean_squared_error', optimizer='Adam') # 损失函数和优化器 
history = model.fit(trainX, trainY, batch_size=64, epochs=50,
                    validation_split=0.1, verbose=2) # 训练 
# loss iter
fig1 = plt.figure(figsize=(12, 8))
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

# ================test error================
test_pred_Y = model.predict(testX) # 用testX预测出Y
test_pred_Y = scaler.inverse_transform(test_pred_Y) # 逆归一化
testY_inv = scaler.inverse_transform(testY.reshape(-1,1)) # 将shape:(x,)调整为shape:(x,1)

# test fit with original Dataset
fig2 = plt.figure(figsize=(12, 8))
plt.plot(test_pred_Y, color="green", label='test')
plt.plot(testY_inv, color='blue', label='dataset')
plt.ylabel('price')
plt.xlabel('date')
plt.legend()
plt.show()

# ================pred================
pred_future_num=50
# 扩张array,先填入0占位
look_back_data=df_values[-look_back:] # 维度为(look_back,)
for i in range(pred_future_num):
  look_back_data=np.append(look_back_data, 0)
look_back_data=look_back_data.reshape(-1,1) # 维度为(look_back+pred_future_num,1)
# print(look_back_data.shape) 

# pred
for i in range(len(look_back_data)-look_back):
  input_X=look_back_data[i:i+look_back] # 维度为(look_back+pred_future_num,1)
  input_X = np.expand_dims(input_X, axis=0)  # 维度为(1,look_back+pred_future_num,1)
  out_Y=model.predict(input_X)
  look_back_data[i+look_back]=out_Y

look_back_data=scaler.inverse_transform(look_back_data) # 再逆变换
print(look_back_data)

# draw
fig3 = plt.figure(figsize=(12, 8))
days=np.arange(1000-look_back+1, 1000+pred_future_num+1).reshape(-1, 1)
plt.plot(days, look_back_data, label="pred",color='green',linewidth=3)
plt.plot(days, list(df.iloc[1000-look_back:1000+pred_future_num,0]),label="oridata",color='blue',)
plt.legend()
plt.show()
相关推荐
PPT百科12 小时前
教师备课效率:PPT家园的一键编辑 vsPPT百科的 AI 生成辅助
人工智能·经验分享·职场和发展·powerpoint·职场·ppt
说私域12 小时前
直播带货的困境与突破:基于“开源AI智能名片链动2+1模式S2B2C商城小程序”的创新研究
人工智能·小程序·开源
自然语12 小时前
数字生已经进化到一个分水岭面临选择?先实现“动态识别“还是先实现“特征信息归纳分类“,文中给出以给出答案,大家选哪个方向?
人工智能·分类·数据挖掘
碧海银沙音频科技研究院12 小时前
结构化知识蒸馏(特征分布+关系知识)
人工智能
围炉聊科技12 小时前
国内的大模型访问能访问墙外内容吗?
人工智能
fantasy_arch12 小时前
LSTM和DenseNet区别
人工智能·rnn·lstm
Deepoch12 小时前
发动机设计迎突破!Deepoc-M低幻觉模型重塑研发逻辑
大数据·人工智能·deepoc
Pocker_Spades_A12 小时前
智能时代的操作系统范式:openEuler的AI就绪度深度评估
人工智能
Sirius Wu12 小时前
智能体开发框架选型
人工智能·aigc
人工智能技术咨询.12 小时前
【无标题】卷积神经网络(CNN)详细介绍及其原理详解(2)
人工智能