sklearn 计算 tfidf 得到每个词分数

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 语料库 可以换为其它同样形式的单词
corpus = [
    list(range(-5, 5)),
    list(range(-6,4)),
    list(range(12)),
    list(range(13))]

# corpus = [
#    ['Two', 'wrongs', 'don\'t', 'make', 'a', 'right', '.'],
#    ['The', 'pen', 'is', 'mightier', 'than', 'the', 'sword'],
#    ['Don\'t', 'put', 'all', 'your', 'eggs', 'in', 'one', 'basket', '.']]
    
def dummy_fun(doc):
    return doc
    
tfidf_vec = TfidfVectorizer(
    analyzer='word',
    tokenizer=dummy_fun,
    preprocessor=dummy_fun,
    token_pattern=None)  

# 使用 fit_transform() 得到 TF-IDF 矩阵。此为 scipy 稀疏矩阵
tfidf_matrix = tfidf_vec.fit_transform(corpus)
# print(tfidf_matrix)

# 使用 get_feature_names() 得到不重复的单词
print(tfidf_vec.get_feature_names_out())

# 得到每个单词对应的 ID
print(tfidf_vec.vocabulary_)
python 复制代码
# 得到 corpus 中每个词得分
for i in range(len(corpus)):
    column_indexes = [tfidf_vec.vocabulary_[key] for key in corpus[i]]
    tf_idf = tfidf_matrix[i, column_indexes].toarray()[0]
    print(tf_idf)

参考:
Applying scikit-learn TfidfVectorizer on tokenized text
sklearn.feature_extraction.text.TfidfVectorizer

相关推荐
MOMO陌染39 分钟前
Python 饼图入门:3 行代码展示数据占比
后端·python
vvoennvv1 小时前
【Python TensorFlow】 TCN-GRU时间序列卷积门控循环神经网络时序预测算法(附代码)
python·rnn·神经网络·机器学习·gru·tensorflow·tcn
自学互联网2 小时前
使用Python构建钢铁行业生产监控系统:从理论到实践
开发语言·python
无心水2 小时前
【Python实战进阶】7、Python条件与循环实战详解:从基础语法到高级技巧
android·java·python·python列表推导式·python条件语句·python循环语句·python实战案例
xwill*2 小时前
RDT-1B: A DIFFUSION FOUNDATION MODEL FOR BIMANUAL MANIPULATION
人工智能·pytorch·python·深度学习
陈奕昆2 小时前
n8n实战营Day2课时2:Loop+Merge节点进阶·Excel批量校验实操
人工智能·python·excel·n8n
程序猿追2 小时前
PyTorch算子模板库技术解读:无缝衔接PyTorch模型与Ascend硬件的桥梁
人工智能·pytorch·python·深度学习·机器学习
秋邱3 小时前
高等教育 AI 智能体的 “导学诊践” 闭环
开发语言·网络·数据库·人工智能·python·docker
组合缺一3 小时前
Solon AI 开发学习6 - chat - 两种 http 流式输入输出
python·学习·http
沐浴露z3 小时前
为什么使用SpringAI时通常用Builder来创建对象?详解 【Builder模式】和【直接 new】的区别
java·python·建造者模式