sklearn 计算 tfidf 得到每个词分数

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 语料库 可以换为其它同样形式的单词
corpus = [
    list(range(-5, 5)),
    list(range(-6,4)),
    list(range(12)),
    list(range(13))]

# corpus = [
#    ['Two', 'wrongs', 'don\'t', 'make', 'a', 'right', '.'],
#    ['The', 'pen', 'is', 'mightier', 'than', 'the', 'sword'],
#    ['Don\'t', 'put', 'all', 'your', 'eggs', 'in', 'one', 'basket', '.']]
    
def dummy_fun(doc):
    return doc
    
tfidf_vec = TfidfVectorizer(
    analyzer='word',
    tokenizer=dummy_fun,
    preprocessor=dummy_fun,
    token_pattern=None)  

# 使用 fit_transform() 得到 TF-IDF 矩阵。此为 scipy 稀疏矩阵
tfidf_matrix = tfidf_vec.fit_transform(corpus)
# print(tfidf_matrix)

# 使用 get_feature_names() 得到不重复的单词
print(tfidf_vec.get_feature_names_out())

# 得到每个单词对应的 ID
print(tfidf_vec.vocabulary_)
python 复制代码
# 得到 corpus 中每个词得分
for i in range(len(corpus)):
    column_indexes = [tfidf_vec.vocabulary_[key] for key in corpus[i]]
    tf_idf = tfidf_matrix[i, column_indexes].toarray()[0]
    print(tf_idf)

参考:
Applying scikit-learn TfidfVectorizer on tokenized text
sklearn.feature_extraction.text.TfidfVectorizer

相关推荐
张小九9935 分钟前
PyTorch的dataloader制作自定义数据集
人工智能·pytorch·python
zstar-_1 小时前
FreeTex v0.2.0:功能升级/支持Mac
人工智能·python·macos·llm
苏生要努力1 小时前
第九届御网杯网络安全大赛初赛WP
linux·python·网络安全
于壮士hoho1 小时前
DeepSeek | AI需求分析
人工智能·python·ai·需求分析·dash
蒙奇D索大1 小时前
【人工智能】自然语言编程革命:腾讯云CodeBuddy实战5步搭建客户管理系统,效率飙升90%
人工智能·python·django·云计算·腾讯云
AndrewHZ1 小时前
【Python生活】如何构建一个跌倒检测的算法?
python·算法·生活·可视化分析·陀螺仪·加速度计·跌倒检测
lizz6661 小时前
Python查询ES错误ApiError(406, ‘Content-Type ...is not supported
python·elasticsearch
lqjun08271 小时前
Focal Loss 原理详解及 PyTorch 代码实现
人工智能·pytorch·python
Kazefuku2 小时前
python文件打包成exe文件
python·学习
源码方舟2 小时前
【基于ALS模型的教育视频推荐系统(Java实现)】
java·python·算法·音视频