sklearn 计算 tfidf 得到每个词分数

python 复制代码
from sklearn.feature_extraction.text import TfidfVectorizer

# 语料库 可以换为其它同样形式的单词
corpus = [
    list(range(-5, 5)),
    list(range(-6,4)),
    list(range(12)),
    list(range(13))]

# corpus = [
#    ['Two', 'wrongs', 'don\'t', 'make', 'a', 'right', '.'],
#    ['The', 'pen', 'is', 'mightier', 'than', 'the', 'sword'],
#    ['Don\'t', 'put', 'all', 'your', 'eggs', 'in', 'one', 'basket', '.']]
    
def dummy_fun(doc):
    return doc
    
tfidf_vec = TfidfVectorizer(
    analyzer='word',
    tokenizer=dummy_fun,
    preprocessor=dummy_fun,
    token_pattern=None)  

# 使用 fit_transform() 得到 TF-IDF 矩阵。此为 scipy 稀疏矩阵
tfidf_matrix = tfidf_vec.fit_transform(corpus)
# print(tfidf_matrix)

# 使用 get_feature_names() 得到不重复的单词
print(tfidf_vec.get_feature_names_out())

# 得到每个单词对应的 ID
print(tfidf_vec.vocabulary_)
python 复制代码
# 得到 corpus 中每个词得分
for i in range(len(corpus)):
    column_indexes = [tfidf_vec.vocabulary_[key] for key in corpus[i]]
    tf_idf = tfidf_matrix[i, column_indexes].toarray()[0]
    print(tf_idf)

参考:
Applying scikit-learn TfidfVectorizer on tokenized text
sklearn.feature_extraction.text.TfidfVectorizer

相关推荐
luckys.one6 小时前
第9篇:Freqtrade量化交易之config.json 基础入门与初始化
javascript·数据库·python·mysql·算法·json·区块链
大翻哥哥8 小时前
Python 2025:量化金融与智能交易的新纪元
开发语言·python·金融
zhousenshan9 小时前
Python爬虫常用框架
开发语言·爬虫·python
非门由也9 小时前
《sklearn机器学习——管道和复合估计器》回归中转换目标
机器学习·回归·sklearn
IMER SIMPLE9 小时前
人工智能-python-深度学习-经典神经网络AlexNet
人工智能·python·深度学习
CodeCraft Studio9 小时前
国产化Word处理组件Spire.DOC教程:使用 Python 将 Markdown 转换为 HTML 的详细教程
python·html·word·markdown·国产化·spire.doc·文档格式转换
专注API从业者10 小时前
Python/Java 代码示例:手把手教程调用 1688 API 获取商品详情实时数据
java·linux·数据库·python
java1234_小锋10 小时前
[免费]基于Python的协同过滤电影推荐系统(Django+Vue+sqlite+爬虫)【论文+源码+SQL脚本】
python·django·电影推荐系统·协同过滤
看海天一色听风起雨落11 小时前
Python学习之装饰器
开发语言·python·学习
XiaoMu_00111 小时前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游