机器学习---无偏估计

1. 如何理解无偏估计

无偏估计:就是我认为所有样本出现的概率⼀样。 假如有N种样本我们认为所有样本出现概率都是

1/N。然后根据这个来计算数学期望。此时的数学期望就是我们平常讲 的平均值。数学期望本质就

是平均值。

2. 无偏估计为何叫做"无偏"?它要"估计"什么?

首先回答第⼀个问题:它要"估计"什么?

它要估计的是整体的数学期望(平均值)。

第⼆个问题:那为何叫做无偏?有偏是什么?

假设这个是⼀些样本的集合X = x1, x2, x3, ..., xn,我们根据样本估计整体的数学期望(平均值)。

因为正常求期望是加权和,什么叫加权和?,这个就叫加权和。

每个样本出现概率不⼀样,概率大的乘起来就大,这个就产生偏重了(有偏估计)。

但是我们不知道某个样本出现的概率。比如你从别⼈口袋里面随机拿了3张钞票。两张是十块钱,

⼀张100 元,然后你想估计下他口袋里的剩下的钱平均下来每张多少钱(估计平均值)。

然后呢?无偏估计计算数学期望就是认为所有样本出现概率⼀样大,没有看不起哪个样本。

回到求钱的平均值的问题。无偏估计我们认为每张钞票出现概率都是1/2(因为只出现了10和100

这两种情况,所以是1/2。如果是出现1 10 100三种情况,每种情况概率则是1/3。

哪怕拿到了两张十块钱,我还是认为十块钱出现的概率和100元的概率⼀样。不偏心。

所以无偏估计,所估计的别⼈口袋每张钱的数学期望(平均值)= 10 ∗ 1/2 + 100 ∗ 1/2。

有偏估计那就是偏重那些出现次数多的样本。认为样本的概率是不⼀样的。 我出现了两次十块

钱,那么我认为十块钱的概率是2/3,100块钱概率只有1/3。

有偏所估计的别⼈口袋每张钱的数学期望(平均值)= 10 ∗ 2/3 + 100 ∗ 1/3。

3. 为何要用无偏估计?

因为现实生活中我不知道某个样本出现的概率,就像骰子,我不知道他是不是加过水银。 所以我

们暂时按照每种情况出现概率⼀样来算。

相关推荐
程序员Linc2 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
xcLeigh10 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能14 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820923 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
果冻人工智能24 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能
databook24 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
碳基学AI29 分钟前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义免费下载方法
大数据·人工智能·python·gpt·算法·语言模型·集成学习
补三补四33 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
果冻人工智能1 小时前
法官们终于似乎明白了:如果没有复制,那就没有版权
人工智能
tle_sammy1 小时前
AI 重构老旧系统:创业新曙光
人工智能·重构