数据可视化 pycharts实现中国各省市地图数据可视化

自用版

数据格式如下:

运行效果如下:


python 复制代码
import pandas as pd
from pyecharts.charts import Map, TreeMap, Timeline, Page, WordCloud
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType
import jieba
import jieba.analyse
import codecs
import math

#存成csv格式
data_path =r"lyjd.csv"
df = pd.read_csv(data_path)

####数据预处理
#按照·进行分隔
df0 = df['省/市/区'].str.split('·', expand=True)

#存入对应的df中
df0.columns=['省', '市', '区','无']
df['省'] = df0['省']
df['市'] = df0['市']
df['区'] = df0['区']

#对不同分类依据进行计数
dfCitySale = df.groupby(['市'])['销量'].sum().reset_index(name='总销量')
dfParkSale = df.groupby(['名称'])['销量'].sum().reset_index(name='景区总销量')
dfParkSale = dfParkSale.sort_values(by='景区总销量', ascending=False)

## 1、	全国销量Top20的热门景点
print(dfParkSale.head(20));

## 2、	全国各省市4A-5A景区数量;(景点分布情况)(可选)
#利用Map进行绘制
def c1() ->Map:
    #dfCityCount记录各省市4A-5A的景区数量
    dfCityCount = df[df['星级'].isin(['4A','5A'])].groupby(['市'])['名称'].count().reset_index(name='景区总数');
    data_city_count = list(zip(dfCityCount['市'],dfCityCount['景区总数']))
    #开始绘图
    china_city2 = (
        Map()
        .add(
            "景区总数",
            data_city_count,
            "china-cities",
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="lxy全国各省市4A-5A景区数量"),
            visualmap_opts=opts.VisualMapOpts(
                min_=1,
                max_=20,
                is_piecewise=True
            ),
        )
        #.render("全国各省市4A-5A景区数量.html")
    )
    return china_city2

## 3、	全国各省市假期出行数据在地图上的分布;(出游分析及建议)(必做)
def c2() ->Map:
    data_city_sale = list(zip(dfCitySale['市'],dfCitySale['总销量']))
    china_city3 = (
        Map()
        .add(
            "景区销量",
            data_city_sale,
            "china-cities",
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="lxy全国各省市假期出行数据在地图上的分布"),
            visualmap_opts=opts.VisualMapOpts(
                min_=1,
                max_=5000,
                is_piecewise=True
            ),
        )
        #.render("全国各省市假期出行数据在地图上的分布.html")
    )
    return china_city3

def c3() ->WordCloud :
    ##4、全国各景点简介文本统计词云图;(景点主要特色)(必做)
    rows = pd.read_csv(data_path)
    counts = {}  # 通过键值对的形式存储词语及其出现的次数
    for index, row in rows.iterrows():
        content = row['简介']
        if pd.isna(content):#如果简介是空值就跳过
            continue
        #分词
        test_list = jieba.lcut(content, cut_all=True)
        for word in test_list:
            if len(word) == 1:  # 单个词语不计算在内
                continue
            else:
                counts[word] = counts.get(word, 0) + 1  # 遍历所有词语,每出现一次其对应的值加 1
     
    items = list(counts.items())  # 将键值对转换成列表
    items.sort(key=lambda x: x[1], reverse=True)  # 根据词语出现的次数进行从大到小排序

    # for i in items:
    #     word, count = i
    #     print("{0:<5}{1:>5}".format(word, count))

    c = (
        WordCloud()
        .add("", items, word_size_range=[20, 100])
        .set_global_opts(title_opts=opts.TitleOpts(title="lxy景区简介词云图"))
        #.render("词云图.html")
    )
    return c


###利用Page函数将三张图绘制在一张页面上
def creatPage():
    page=Page(layout=Page.DraggablePageLayout)
    page.add(
        c1(),
        c2(),
        c3()
        )
    page.render("数据可视化.html")

if __name__ == "__main__":
    creatPage()
相关推荐
BBB努力学习程序设计1 分钟前
Python 高效处理大数据:生成器(Generator)的工作机制与实战技巧
python
hashiqimiya41 分钟前
java程序的并发
java·开发语言·python
2301_8119583843 分钟前
浏览器下载huggingface网络连接超时,使用镜像源教程
python·tokenizer
red润1 小时前
Python环境变量自动配置:实现生产与开发环境无缝切换
后端·python
知识进脑的肖老千啊1 小时前
LangGraph简单讲解示例——State、Node、Edge
人工智能·python·ai·langchain
蹦蹦跳跳真可爱5891 小时前
Python----大模型(GPT-2模型训练,预测)
开发语言·人工智能·pytorch·python·gpt·深度学习·embedding
import_random1 小时前
[conda]anaconda的bin目录下的pip和pip3(区别)
python
import_random1 小时前
[conda]anaconda的bin目录下的python3.13,python3.1,python3,python(区别)
python
小北方城市网1 小时前
第 8 课:Python 面向对象进阶 —— 类方法、静态方法与高级特性
网络·python·microsoft·数据库架构
拿我格子衫来2 小时前
搭建公司产品wiki的开源框架选型,注重介绍wikijs框架
程序人生·信息可视化·职场和发展