数据可视化 pycharts实现中国各省市地图数据可视化

自用版

数据格式如下:

运行效果如下:


python 复制代码
import pandas as pd
from pyecharts.charts import Map, TreeMap, Timeline, Page, WordCloud
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
from pyecharts.globals import ThemeType
import jieba
import jieba.analyse
import codecs
import math

#存成csv格式
data_path =r"lyjd.csv"
df = pd.read_csv(data_path)

####数据预处理
#按照·进行分隔
df0 = df['省/市/区'].str.split('·', expand=True)

#存入对应的df中
df0.columns=['省', '市', '区','无']
df['省'] = df0['省']
df['市'] = df0['市']
df['区'] = df0['区']

#对不同分类依据进行计数
dfCitySale = df.groupby(['市'])['销量'].sum().reset_index(name='总销量')
dfParkSale = df.groupby(['名称'])['销量'].sum().reset_index(name='景区总销量')
dfParkSale = dfParkSale.sort_values(by='景区总销量', ascending=False)

## 1、	全国销量Top20的热门景点
print(dfParkSale.head(20));

## 2、	全国各省市4A-5A景区数量;(景点分布情况)(可选)
#利用Map进行绘制
def c1() ->Map:
    #dfCityCount记录各省市4A-5A的景区数量
    dfCityCount = df[df['星级'].isin(['4A','5A'])].groupby(['市'])['名称'].count().reset_index(name='景区总数');
    data_city_count = list(zip(dfCityCount['市'],dfCityCount['景区总数']))
    #开始绘图
    china_city2 = (
        Map()
        .add(
            "景区总数",
            data_city_count,
            "china-cities",
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="lxy全国各省市4A-5A景区数量"),
            visualmap_opts=opts.VisualMapOpts(
                min_=1,
                max_=20,
                is_piecewise=True
            ),
        )
        #.render("全国各省市4A-5A景区数量.html")
    )
    return china_city2

## 3、	全国各省市假期出行数据在地图上的分布;(出游分析及建议)(必做)
def c2() ->Map:
    data_city_sale = list(zip(dfCitySale['市'],dfCitySale['总销量']))
    china_city3 = (
        Map()
        .add(
            "景区销量",
            data_city_sale,
            "china-cities",
            label_opts=opts.LabelOpts(is_show=False),
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title="lxy全国各省市假期出行数据在地图上的分布"),
            visualmap_opts=opts.VisualMapOpts(
                min_=1,
                max_=5000,
                is_piecewise=True
            ),
        )
        #.render("全国各省市假期出行数据在地图上的分布.html")
    )
    return china_city3

def c3() ->WordCloud :
    ##4、全国各景点简介文本统计词云图;(景点主要特色)(必做)
    rows = pd.read_csv(data_path)
    counts = {}  # 通过键值对的形式存储词语及其出现的次数
    for index, row in rows.iterrows():
        content = row['简介']
        if pd.isna(content):#如果简介是空值就跳过
            continue
        #分词
        test_list = jieba.lcut(content, cut_all=True)
        for word in test_list:
            if len(word) == 1:  # 单个词语不计算在内
                continue
            else:
                counts[word] = counts.get(word, 0) + 1  # 遍历所有词语,每出现一次其对应的值加 1
     
    items = list(counts.items())  # 将键值对转换成列表
    items.sort(key=lambda x: x[1], reverse=True)  # 根据词语出现的次数进行从大到小排序

    # for i in items:
    #     word, count = i
    #     print("{0:<5}{1:>5}".format(word, count))

    c = (
        WordCloud()
        .add("", items, word_size_range=[20, 100])
        .set_global_opts(title_opts=opts.TitleOpts(title="lxy景区简介词云图"))
        #.render("词云图.html")
    )
    return c


###利用Page函数将三张图绘制在一张页面上
def creatPage():
    page=Page(layout=Page.DraggablePageLayout)
    page.add(
        c1(),
        c2(),
        c3()
        )
    page.render("数据可视化.html")

if __name__ == "__main__":
    creatPage()
相关推荐
青钰未央2 小时前
19、Python字符串高阶实战:转义字符深度解析、高效拼接与输入处理技巧
python·改行学it
Blue桃之夭夭4 小时前
Python进阶【四】:XML和JSON文件处理
xml·python·json
开发者工具分享5 小时前
Lua 的速度为什么比 Python 快
开发语言·python·lua
蔗理苦5 小时前
2025-05-28 Python&深度学习8——优化器
开发语言·pytorch·python·深度学习·优化器
UVE5 小时前
【免费】【无需登录/关注】坐标系批量转换与可视化网页工具
arcgis·数据分析
杰瑞学AI5 小时前
在PyTorch中,对于一个张量,如何快速为多个元素赋值相同的值
人工智能·pytorch·python
hongjianMa6 小时前
【论文阅读】User Diverse Preference Modeling by Multimodal Attentive Metric Learning
论文阅读·python·推荐系统·多模态推荐
乖乖der6 小时前
python同步mysql数据
开发语言·python·mysql
jdyzzy7 小时前
制造企业生产数据分析全解析:5大类数据定义、分析方法与落地指南
人工智能·数据分析·制造
渐消散7 小时前
人工智障玩游戏
python