Word Search II

Problem

Given an m x n board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

复制代码
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

复制代码
Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Intuition

The task is to find all words on the board that are present in the given list of words. We can use a Trie data structure to efficiently check whether a sequence of letters on the board forms a valid word. The Trie is built from the list of words, and a depth-first search (DFS) is performed on the board to explore possible word formations.

Approach

TrieNode Class:

Implement a TrieNode class with attributes:

children: A dictionary mapping characters to child nodes.

iswords: A boolean indicating whether the current node represents the end of a word.

TrieNode Method:

Implement an addword method in the TrieNode class to insert a word into the Trie.

Solution Class:

Implement a Solution class with a findWords method.

Initialize an empty Trie (root) and add each word from the list of words to the Trie.

DFS Function:

Implement a DFS function (dfs) to explore possible word formations on the board.

The DFS function takes parameters (r, c, node, word), where (r, c) represents the current position on the board, node represents the current node in the Trie, and word represents the sequence of letters formed so far.

Explore adjacent cells horizontally and vertically, checking if the next letter in the sequence is a valid child of the current Trie node. If yes, continue the DFS.

If the current Trie node represents the end of a word, add the word to the result set (res).

Main Function:

Iterate over each cell on the board and start the DFS from that cell, considering it as the starting point of a word.

Return the list of words present in the result set.

Complexity

  • Time complexity:

Trie Construction: The time complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each word of length m is inserted into the Trie.

DFS on Board: The time complexity of DFS on the board is O(rows * cols * 4^m), where rows and cols are the dimensions of the board, and m is the maximum length of a word. In the worst case, we explore 4 directions (horizontal and vertical) at each cell.

  • Space complexity:

Trie Construction: The space complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each character of each word is stored in the Trie.

DFS on Board: The space complexity of DFS on the board is O(m), where m is the maximum length of a word. This is the maximum depth of the recursion stack during DFS. The visit set is used to keep track of visited cells on the board.

Code

复制代码
class TrieNode:
    def __init__(self):
        self.children = {}
        self.iswords = False

    def addword(self, words):
        cur = self
        
        for c in words:
            if c not in cur.children:
                cur.children[c] = TrieNode()
            cur = cur.children[c]
        cur.iswords = True
class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        root = TrieNode()

        for w in words:
            root.addword(w)
        
        rows, cols = len(board), len(board[0])
        res, visit = set(), set()

        def dfs(r, c, node, word):
            if(r < 0 or c < 0 or
               r == rows or c == cols or
               (r, c) in visit or board[r][c] not in node.children):
               return

            visit.add((r, c))
            node = node.children[board[r][c]]
            word += board[r][c]
            if node.iswords:
                res.add(word)

            dfs(r + 1, c, node, word)
            dfs(r - 1, c, node, word)
            dfs(r, c - 1, node, word)
            dfs(r, c + 1, node, word)
            visit.remove((r, c))
        
        for r in range(rows):
            for c in range(cols):
                dfs(r, c, root, '')

        return list(res)
相关推荐
Coovally AI模型快速验证5 小时前
农田扫描提速37%!基于检测置信度的无人机“智能抽查”路径规划,Coovally一键加速模型落地
深度学习·算法·yolo·计算机视觉·transformer·无人机
pusue_the_sun5 小时前
数据结构:二叉树oj练习
c语言·数据结构·算法·二叉树
RaymondZhao346 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
zhangfeng11336 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
啊阿狸不会拉杆7 小时前
《算法导论》第 32 章 - 字符串匹配
开发语言·c++·算法
小学生的信奥之路7 小时前
洛谷P3817题解:贪心算法解决糖果分配问题
c++·算法·贪心算法
你知道网上冲浪吗8 小时前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析
地平线开发者9 小时前
征程 6 | PTQ 精度调优辅助代码,总有你用得上的
算法·自动驾驶
Tisfy10 小时前
LeetCode 837.新 21 点:动态规划+滑动窗口
数学·算法·leetcode·动态规划·dp·滑动窗口·概率
CoovallyAIHub10 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉