Word Search II

Problem

Given an m x n board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

复制代码
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

复制代码
Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Intuition

The task is to find all words on the board that are present in the given list of words. We can use a Trie data structure to efficiently check whether a sequence of letters on the board forms a valid word. The Trie is built from the list of words, and a depth-first search (DFS) is performed on the board to explore possible word formations.

Approach

TrieNode Class:

Implement a TrieNode class with attributes:

children: A dictionary mapping characters to child nodes.

iswords: A boolean indicating whether the current node represents the end of a word.

TrieNode Method:

Implement an addword method in the TrieNode class to insert a word into the Trie.

Solution Class:

Implement a Solution class with a findWords method.

Initialize an empty Trie (root) and add each word from the list of words to the Trie.

DFS Function:

Implement a DFS function (dfs) to explore possible word formations on the board.

The DFS function takes parameters (r, c, node, word), where (r, c) represents the current position on the board, node represents the current node in the Trie, and word represents the sequence of letters formed so far.

Explore adjacent cells horizontally and vertically, checking if the next letter in the sequence is a valid child of the current Trie node. If yes, continue the DFS.

If the current Trie node represents the end of a word, add the word to the result set (res).

Main Function:

Iterate over each cell on the board and start the DFS from that cell, considering it as the starting point of a word.

Return the list of words present in the result set.

Complexity

  • Time complexity:

Trie Construction: The time complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each word of length m is inserted into the Trie.

DFS on Board: The time complexity of DFS on the board is O(rows * cols * 4^m), where rows and cols are the dimensions of the board, and m is the maximum length of a word. In the worst case, we explore 4 directions (horizontal and vertical) at each cell.

  • Space complexity:

Trie Construction: The space complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each character of each word is stored in the Trie.

DFS on Board: The space complexity of DFS on the board is O(m), where m is the maximum length of a word. This is the maximum depth of the recursion stack during DFS. The visit set is used to keep track of visited cells on the board.

Code

class TrieNode:
    def __init__(self):
        self.children = {}
        self.iswords = False

    def addword(self, words):
        cur = self
        
        for c in words:
            if c not in cur.children:
                cur.children[c] = TrieNode()
            cur = cur.children[c]
        cur.iswords = True
class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        root = TrieNode()

        for w in words:
            root.addword(w)
        
        rows, cols = len(board), len(board[0])
        res, visit = set(), set()

        def dfs(r, c, node, word):
            if(r < 0 or c < 0 or
               r == rows or c == cols or
               (r, c) in visit or board[r][c] not in node.children):
               return

            visit.add((r, c))
            node = node.children[board[r][c]]
            word += board[r][c]
            if node.iswords:
                res.add(word)

            dfs(r + 1, c, node, word)
            dfs(r - 1, c, node, word)
            dfs(r, c - 1, node, word)
            dfs(r, c + 1, node, word)
            visit.remove((r, c))
        
        for r in range(rows):
            for c in range(cols):
                dfs(r, c, root, '')

        return list(res)
相关推荐
视觉小萌新6 分钟前
VScode+opencv——关于opencv多张图片拼接成一张图片的算法
vscode·opencv·算法
2的n次方_17 分钟前
二维费用背包问题
java·算法·动态规划
simple_ssn1 小时前
【C语言刷力扣】1502.判断能否形成等差数列
c语言·算法·leetcode
寂静山林1 小时前
UVa 11855 Buzzwords
算法
Curry_Math1 小时前
LeetCode 热题100之技巧关卡
算法·leetcode
ahadee1 小时前
蓝桥杯每日真题 - 第10天
c语言·vscode·算法·蓝桥杯
军训猫猫头2 小时前
35.矩阵格式的一到一百数字 C语言
c语言·算法
Mr_Xuhhh3 小时前
递归搜索与回溯算法
c语言·开发语言·c++·算法·github
SoraLuna3 小时前
「Mac玩转仓颉内测版12」PTA刷题篇3 - L1-003 个位数统计
算法·macos·cangjie
爱吃生蚝的于勒5 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法