Word Search II

Problem

Given an m x n board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

复制代码
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

复制代码
Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Intuition

The task is to find all words on the board that are present in the given list of words. We can use a Trie data structure to efficiently check whether a sequence of letters on the board forms a valid word. The Trie is built from the list of words, and a depth-first search (DFS) is performed on the board to explore possible word formations.

Approach

TrieNode Class:

Implement a TrieNode class with attributes:

children: A dictionary mapping characters to child nodes.

iswords: A boolean indicating whether the current node represents the end of a word.

TrieNode Method:

Implement an addword method in the TrieNode class to insert a word into the Trie.

Solution Class:

Implement a Solution class with a findWords method.

Initialize an empty Trie (root) and add each word from the list of words to the Trie.

DFS Function:

Implement a DFS function (dfs) to explore possible word formations on the board.

The DFS function takes parameters (r, c, node, word), where (r, c) represents the current position on the board, node represents the current node in the Trie, and word represents the sequence of letters formed so far.

Explore adjacent cells horizontally and vertically, checking if the next letter in the sequence is a valid child of the current Trie node. If yes, continue the DFS.

If the current Trie node represents the end of a word, add the word to the result set (res).

Main Function:

Iterate over each cell on the board and start the DFS from that cell, considering it as the starting point of a word.

Return the list of words present in the result set.

Complexity

  • Time complexity:

Trie Construction: The time complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each word of length m is inserted into the Trie.

DFS on Board: The time complexity of DFS on the board is O(rows * cols * 4^m), where rows and cols are the dimensions of the board, and m is the maximum length of a word. In the worst case, we explore 4 directions (horizontal and vertical) at each cell.

  • Space complexity:

Trie Construction: The space complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each character of each word is stored in the Trie.

DFS on Board: The space complexity of DFS on the board is O(m), where m is the maximum length of a word. This is the maximum depth of the recursion stack during DFS. The visit set is used to keep track of visited cells on the board.

Code

复制代码
class TrieNode:
    def __init__(self):
        self.children = {}
        self.iswords = False

    def addword(self, words):
        cur = self
        
        for c in words:
            if c not in cur.children:
                cur.children[c] = TrieNode()
            cur = cur.children[c]
        cur.iswords = True
class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        root = TrieNode()

        for w in words:
            root.addword(w)
        
        rows, cols = len(board), len(board[0])
        res, visit = set(), set()

        def dfs(r, c, node, word):
            if(r < 0 or c < 0 or
               r == rows or c == cols or
               (r, c) in visit or board[r][c] not in node.children):
               return

            visit.add((r, c))
            node = node.children[board[r][c]]
            word += board[r][c]
            if node.iswords:
                res.add(word)

            dfs(r + 1, c, node, word)
            dfs(r - 1, c, node, word)
            dfs(r, c - 1, node, word)
            dfs(r, c + 1, node, word)
            visit.remove((r, c))
        
        for r in range(rows):
            for c in range(cols):
                dfs(r, c, root, '')

        return list(res)
相关推荐
立志成为大牛的小牛8 分钟前
数据结构——十七、线索二叉树找前驱与后继(王道408)
数据结构·笔记·学习·程序人生·考研·算法
星空下的曙光10 分钟前
Node.js crypto模块所有 API 详解 + 常用 API + 使用场景
算法·node.js·哈希算法
StarPrayers.2 小时前
旅行商问题(TSP)(2)(heuristics.py)(TSP 的两种贪心启发式算法实现)
前端·人工智能·python·算法·pycharm·启发式算法
爱吃橘的橘猫2 小时前
嵌入式系统与嵌入式 C 语言(2)
c语言·算法·嵌入式
235162 小时前
【LeetCode】146. LRU 缓存
java·后端·算法·leetcode·链表·缓存·职场和发展
weixin_307779133 小时前
使用Python高效读取ZIP压缩文件中的UTF-8 JSON数据到Pandas和PySpark DataFrame
开发语言·python·算法·自动化·json
柳安忆3 小时前
【论文阅读】Sparks of Science
算法
web安全工具库4 小时前
从课堂笔记到实践:深入理解Linux C函数库的奥秘
java·数据库·算法
爱编程的鱼5 小时前
C# 变量详解:从基础概念到高级应用
java·算法·c#
HalvmånEver5 小时前
红黑树实现与原理剖析(上篇):核心规则与插入平衡逻辑
数据结构·c++·学习·算法·红黑树