Word Search II

Problem

Given an m x n board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

复制代码
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

复制代码
Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Intuition

The task is to find all words on the board that are present in the given list of words. We can use a Trie data structure to efficiently check whether a sequence of letters on the board forms a valid word. The Trie is built from the list of words, and a depth-first search (DFS) is performed on the board to explore possible word formations.

Approach

TrieNode Class:

Implement a TrieNode class with attributes:

children: A dictionary mapping characters to child nodes.

iswords: A boolean indicating whether the current node represents the end of a word.

TrieNode Method:

Implement an addword method in the TrieNode class to insert a word into the Trie.

Solution Class:

Implement a Solution class with a findWords method.

Initialize an empty Trie (root) and add each word from the list of words to the Trie.

DFS Function:

Implement a DFS function (dfs) to explore possible word formations on the board.

The DFS function takes parameters (r, c, node, word), where (r, c) represents the current position on the board, node represents the current node in the Trie, and word represents the sequence of letters formed so far.

Explore adjacent cells horizontally and vertically, checking if the next letter in the sequence is a valid child of the current Trie node. If yes, continue the DFS.

If the current Trie node represents the end of a word, add the word to the result set (res).

Main Function:

Iterate over each cell on the board and start the DFS from that cell, considering it as the starting point of a word.

Return the list of words present in the result set.

Complexity

  • Time complexity:

Trie Construction: The time complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each word of length m is inserted into the Trie.

DFS on Board: The time complexity of DFS on the board is O(rows * cols * 4^m), where rows and cols are the dimensions of the board, and m is the maximum length of a word. In the worst case, we explore 4 directions (horizontal and vertical) at each cell.

  • Space complexity:

Trie Construction: The space complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each character of each word is stored in the Trie.

DFS on Board: The space complexity of DFS on the board is O(m), where m is the maximum length of a word. This is the maximum depth of the recursion stack during DFS. The visit set is used to keep track of visited cells on the board.

Code

复制代码
class TrieNode:
    def __init__(self):
        self.children = {}
        self.iswords = False

    def addword(self, words):
        cur = self
        
        for c in words:
            if c not in cur.children:
                cur.children[c] = TrieNode()
            cur = cur.children[c]
        cur.iswords = True
class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        root = TrieNode()

        for w in words:
            root.addword(w)
        
        rows, cols = len(board), len(board[0])
        res, visit = set(), set()

        def dfs(r, c, node, word):
            if(r < 0 or c < 0 or
               r == rows or c == cols or
               (r, c) in visit or board[r][c] not in node.children):
               return

            visit.add((r, c))
            node = node.children[board[r][c]]
            word += board[r][c]
            if node.iswords:
                res.add(word)

            dfs(r + 1, c, node, word)
            dfs(r - 1, c, node, word)
            dfs(r, c - 1, node, word)
            dfs(r, c + 1, node, word)
            visit.remove((r, c))
        
        for r in range(rows):
            for c in range(cols):
                dfs(r, c, root, '')

        return list(res)
相关推荐
whltaoin1 小时前
Java实现N皇后问题的双路径探索:递归回溯与迭代回溯算法详解
java·算法
梭七y3 小时前
【力扣hot100题】(032)排序链表
算法·leetcode·链表
SsummerC3 小时前
【leetcode100】数组中的第K个最大元素
python·算法·leetcode
编程绿豆侠3 小时前
力扣HOT100之链表:206. 反转链表
算法·leetcode·链表
永恒迷星.by4 小时前
文件操作(c语言)
c语言·c++·算法·文件操作
还有你Y4 小时前
MIMO预编码与检测算法的对比
算法·预编码算法
凯强同学5 小时前
第十四届蓝桥杯大赛软件赛省赛Python 大学 C 组:7.翻转
python·算法·蓝桥杯
记得早睡~6 小时前
leetcode51-N皇后
javascript·算法·leetcode·typescript
lancyu7 小时前
C语言--插入排序
c语言·算法·排序算法
点云SLAM7 小时前
C++20新增内容
c++·算法·c++20·c++ 标准库