Word Search II

Problem

Given an m x n board of characters and a list of strings words, return all words on the board.

Each word must be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

Example 1:

复制代码
Input: board = [["o","a","a","n"],["e","t","a","e"],["i","h","k","r"],["i","f","l","v"]], words = ["oath","pea","eat","rain"]
Output: ["eat","oath"]

Example 2:

复制代码
Input: board = [["a","b"],["c","d"]], words = ["abcb"]
Output: []

Intuition

The task is to find all words on the board that are present in the given list of words. We can use a Trie data structure to efficiently check whether a sequence of letters on the board forms a valid word. The Trie is built from the list of words, and a depth-first search (DFS) is performed on the board to explore possible word formations.

Approach

TrieNode Class:

Implement a TrieNode class with attributes:

children: A dictionary mapping characters to child nodes.

iswords: A boolean indicating whether the current node represents the end of a word.

TrieNode Method:

Implement an addword method in the TrieNode class to insert a word into the Trie.

Solution Class:

Implement a Solution class with a findWords method.

Initialize an empty Trie (root) and add each word from the list of words to the Trie.

DFS Function:

Implement a DFS function (dfs) to explore possible word formations on the board.

The DFS function takes parameters (r, c, node, word), where (r, c) represents the current position on the board, node represents the current node in the Trie, and word represents the sequence of letters formed so far.

Explore adjacent cells horizontally and vertically, checking if the next letter in the sequence is a valid child of the current Trie node. If yes, continue the DFS.

If the current Trie node represents the end of a word, add the word to the result set (res).

Main Function:

Iterate over each cell on the board and start the DFS from that cell, considering it as the starting point of a word.

Return the list of words present in the result set.

Complexity

  • Time complexity:

Trie Construction: The time complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each word of length m is inserted into the Trie.

DFS on Board: The time complexity of DFS on the board is O(rows * cols * 4^m), where rows and cols are the dimensions of the board, and m is the maximum length of a word. In the worst case, we explore 4 directions (horizontal and vertical) at each cell.

  • Space complexity:

Trie Construction: The space complexity of Trie construction is O(w * m), where w is the number of words and m is the average length of the words. Each character of each word is stored in the Trie.

DFS on Board: The space complexity of DFS on the board is O(m), where m is the maximum length of a word. This is the maximum depth of the recursion stack during DFS. The visit set is used to keep track of visited cells on the board.

Code

复制代码
class TrieNode:
    def __init__(self):
        self.children = {}
        self.iswords = False

    def addword(self, words):
        cur = self
        
        for c in words:
            if c not in cur.children:
                cur.children[c] = TrieNode()
            cur = cur.children[c]
        cur.iswords = True
class Solution:
    def findWords(self, board: List[List[str]], words: List[str]) -> List[str]:
        root = TrieNode()

        for w in words:
            root.addword(w)
        
        rows, cols = len(board), len(board[0])
        res, visit = set(), set()

        def dfs(r, c, node, word):
            if(r < 0 or c < 0 or
               r == rows or c == cols or
               (r, c) in visit or board[r][c] not in node.children):
               return

            visit.add((r, c))
            node = node.children[board[r][c]]
            word += board[r][c]
            if node.iswords:
                res.add(word)

            dfs(r + 1, c, node, word)
            dfs(r - 1, c, node, word)
            dfs(r, c - 1, node, word)
            dfs(r, c + 1, node, word)
            visit.remove((r, c))
        
        for r in range(rows):
            for c in range(cols):
                dfs(r, c, root, '')

        return list(res)
相关推荐
林泽毅9 分钟前
SwanLab x EasyR1:多模态LLM强化学习后训练组合拳,让模型进化更高效
算法·llm·强化学习
小林熬夜学编程10 分钟前
【高并发内存池】第八弹---脱离new的定长内存池与多线程malloc测试
c语言·开发语言·数据结构·c++·算法·哈希算法
刚入门的大一新生17 分钟前
归并排序延伸-非递归版本
算法·排序算法
独好紫罗兰22 分钟前
洛谷题单3-P1980 [NOIP 2013 普及组] 计数问题-python-流程图重构
开发语言·python·算法
独好紫罗兰27 分钟前
洛谷题单3-P1009 [NOIP 1998 普及组] 阶乘之和-python-流程图重构
开发语言·python·算法
曦月逸霜38 分钟前
蓝桥杯高频考点——高精度(含C++源码)
c++·算法·蓝桥杯
ゞ 正在缓冲99%…1 小时前
leetcode152.乘积最大子数组
数据结构·算法·leetcode
闯闯爱编程1 小时前
数组与特殊压缩矩阵
数据结构·算法·矩阵
秋风战士2 小时前
通信算法之255:无人机频谱探测设备技术详解
算法·无人机
laimaxgg2 小时前
数据结构B树的实现
开发语言·数据结构·c++·b树·算法