Kafka-服务端-GroupCoordinator

在每一个Broker上都会实例化一个GroupCoordinator对象,Kafka按照Consumer Group的名称将其分配给对应的GroupCoordinator进行管理;

每个GroupCoordinator只负责管理Consumer Group的一个子集,而非集群中全部的Consumer Group。

请注意与KafkaController以及副本机制中的主从模式的区别。

GroupCoordinator有几项比较重要的功能:

一是负责处理JoinGroupRequest和SyncGroupRequest完成Consumer Group中分区的分配工作;

二是通过GroupMetadataManager和内部Topic"Offsets Topic"维护offset信息,即使出现消费者宕机也可以找回之前提交的offset;

三是记录Consumer Group的相关信息,即使Broker宕机导致Consumer Group由新的GroupCoordinator进行管理,新GroupCoordinator也可以知道Consumer Group中每个消费者负责处理哪个分区等信息;

四是通过心跳消息检测消费者的状态。

GroupCoordinator中使用MemberMetadata记录消费者的元数据,MemberMetadata中各字段的含义和功能如下所述。

  • memberld:对应消费者的id,此值是由服务端的GroupCoordinator分配的。
  • groupld:记录消费者所在的Consumer Group的id。
  • assignment:Array[Byte]类型,记录了分配给当前Member的分区信息。
  • supportedProtocols:对应消费者支持的PartitionAssignor。
  • awaitingJoinCallback:与JoinGroupRequest相关的回调函数,后面详述。
  • awaitingSyncCallback:与SyncGroupRequest相关的回调函数,后面详述。
  • sessionTimeoutMs:心跳超时时间。
  • latestHeartbeat:最后一次收到心跳消息的时间戳。
  • isLeaving:标识对应消费者是否已经离开了Consumer Group。

MemberMetadata.vote方法提供了从给定候选PartitionAssignor中选择消费者支持的PartitionAssignor的功能。

GroupMetadata记录了Consumer Group的元数据信息,其字段的含义如下所述。

  • groupld:对应Consumer Group的id。
  • members:HashMap[String,MemberMetadata]类型,key是memberld,value是对应的MemberMetadata对象。
  • state:GroupState类型,标识当前Consumer Group所处的状态。
  • generationld:标识当前Consumer Group的年代信息,避免受到过期请求的影响。
  • leaderld:记录Consumer Group中的Leader消费者的memberld。
  • protocol:记录了当前Consumer Group选择的ParitionAssignor。
    在GroupMetadata中提供了对上述字段的操作,例如对members集合的增删、对state的切换。GroupMetadata在进行Member的增删操作时,还会顺便选择Group Leader:
相关推荐
潇洒畅想2 小时前
分布式锁极端场景解决方案总结
分布式
潇洒畅想4 小时前
分布式消息中间件处理(幂等,顺序,重试,积压)方案总结
分布式
sysinside5 小时前
Elasticsearch 9.2 发布 - 分布式搜索和分析引擎
大数据·分布式·elasticsearch
嘉禾望岗5039 小时前
spark算子类型
大数据·分布式·spark
大厂技术总监下海9 小时前
来自美团生产环境的实战派:开源CAT监控,如何保障超大规模分布式系统可观测性?
分布式·开源
大厂技术总监下海10 小时前
深入 Apache Dubbo 架构:解读一个开源高性能 RPC 框架的设计哲学与核心源码
分布式·微服务
前端不太难14 小时前
不写 Socket,也能做远程任务?HarmonyOS 分布式任务同步实战
分布式·华为·harmonyos
yumgpkpm15 小时前
Cloudera CDP 7.3(国产CMP 鲲鹏版)平台与银行五大平台的技术对接方案
大数据·人工智能·hive·zookeeper·flink·kafka·cloudera
回家路上绕了弯15 小时前
Spring Retry框架实战指南:优雅处理分布式系统中的瞬时故障
分布式·后端
前端不太难15 小时前
HarmonyOS 分布式开发第一课:设备间协同调试实战
分布式·华为·harmonyos