视频:从研究到实际生产应用,探索语音 AI

这篇文章最初发表在 NVIDIA 技术博客上。

将语音和翻译 AI 集成到我们的日常生活中,正在迅速重塑我们的互动方式(从虚拟助理到呼叫中心和增强现实体验)。语音 AI 日为语音 AI 的新进展提供了宝贵见解,展示了这项技术如何应对现实世界中的挑战。

在前三次语音 AI 日会议中,卡内基梅隆大学Hippocratic AISuno 以及 Wipro 讨论了如何部署语音 AI 以更大限度地提高业务投资。

要点

  • 统一兼容框架:建立标准化的语音 AI 开发框架,可以确保不同组件之间的无缝兼容性。这有助于更轻松地开发和部署语音 AI 解决方案,并最终提高语音 AI 服务的整体质量。
  • 通过 MLOps 提高效率:实施 MLOps 可以简化从研究到生产的模型管理过程,帮助公司克服从概念验证到大规模生产实施的挑战。
  • 严格的可靠性测试:全面的测试和验证过程对于确保语音 AI 解决方案的准确性和可靠性至关重要。这包括评估解决方案对各种语音类型的理解及其有效处理错误和意外输入的能力。
  • **处理音频的通用性:**语音 AI 的能力扩展到处理口头和非口头音频,这增强了其在各种应用中的效用,提高了其实用性和适用性。

视频:从研究到实际生产应用,探索语音 AI

总结

在 Omniverse 中,语音 AI 的研究正在革新多语言应用程序的开发,使其能够同时理解不同的语言。先进的多语言语音技术使您能够创建应用程序,并提供超越文化和国家边界的卓越用户体验。

如需深入了解语音和翻译 AI (包括自动语音识别 (ASR)、文本转语音 (TTS) 和神经网络机器翻译 (NMT))的最新趋势和技术,请参阅以下资源:

  • 语音 AI 日:您可以点播观看全部三次语音 AI 日会议,其中包括摩托罗拉和德勤等领先公司的演讲。
  • 语音 AI 电子书:全面概述语音 AI 的现状,了解其在各行各业中的功能和重要性。
  • NVIDIA Riva:深入了解 NVIDIA Riva,这是一款 GPU 加速的语音和翻译 AI,具有自动语音识别、文本转语音和神经机器翻译技能,非常适合跨云平台、本地、边缘和嵌入式设备的对话式应用。

阅读原文

相关推荐
落樱弥城9 天前
Nvidia显卡架构演进
人工智能·ai·gpu·nvidia·gpgpu
Panesle14 天前
英伟达开源253B语言模型:Llama-3.1-Nemotron-Ultra-253B-v1 模型情况
人工智能·语言模型·llama·nvidia
Panesle16 天前
英伟达Llama-3.1-Nemotron-Ultra-253B-v1语言模型论文快读:FFN Fusion
人工智能·语言模型·llama·nvidia
mortimer22 天前
5090 装机后无法使用 GPU 加速?别急,这里有解决办法!
github·gpu·nvidia
kcarly23 天前
TensorRT 有什么特殊之处
ai·ai绘画·nvidia·tensorrt
天朝八阿哥1 个月前
Debian安装Nvidia驱动
debian·nvidia
扫地的小何尚1 个月前
NVIDIA TensorRT 深度学习推理加速引擎详解
c++·人工智能·深度学习·gpu·nvidia·cuda
放羊郎1 个月前
英伟达消费级RTX显卡配置表
网络·nvidia·英伟达·游戏显卡·rtx
nuczzz2 个月前
NVIDIA k8s-device-plugin源码分析与安装部署
kubernetes·k8s·gpu·nvidia·cuda
Damon小智2 个月前
探索高性能AI识别和边缘计算 | NVIDIA Jetson Orin Nano 8GB 开发套件的全面测评
深度学习·ai·边缘计算·树莓派·nvidia·开发板·orin nano