编译支持cuda硬件加速的ffmpeg

本来以为很简单,因为印象中自己在windows机器上使用过。

目前的实在一个docker环境下的ubuntu系统里。

官方操作文档

按照官方操作文档Using FFmpeg with NVIDIA GPU Hardware Acceleration - NVIDIA Docs的描述,步骤很简单:

1、安装nv-codec-headers的头文件。

bash 复制代码
git clone https://git.videolan.org/git/ffmpeg/nv-codec-headers.git
cd nv-codec-headers && sudo make install && cd --

2、克隆ffmpeg源代码。

bash 复制代码
git clone https://git.ffmpeg.org/ffmpeg.git ffmpeg/

3、安装编译源代码需要的依赖库。

bash 复制代码
sudo apt-get install build-essential yasm cmake libtool libc6 libc6-dev unzip wget libnuma1 libnuma-dev

4、配置编译条件,进行编译安装。

bash 复制代码
./configure --enable-nonfree --enable-cuda-nvcc --enable-libnpp --extra-cflags=-I/usr/local/cuda/include --extra-ldflags=-L/usr/local/cuda/lib64 --disable-static --enable-shared

5、进行测试使用。

可能出问题的坑

但是这里隐含了几个前提条件。

1、nv-codec-headers是有版本对应的,需要根据目标机器上的驱动版本,选择对应的版本。

查看目标机器上的驱动版本可以执行nvidia-smi查看。

nv-codec-headers里的README文件里写了匹配的版本信息。

2、目标机器需要安装CUDA toolkit,这个文档里有写,可以执行nvcc --version查看是否安装成功。

3、配置ffmpeg编译条件的时候,里面包含了两个目录:

/usr/local/cuda/lib64和/usr/local/cuda/include。要确保这两个目录里确实有需要的文件。

笔者就发现目标机器上的/usr/local/cuda/lib64是空的,然后通过:

find / -name 'libcuda*' 命令找到了实际存在libcuda.so文件的目录是:/usr/lib/x86_64-linux-gnu/。

这样就需要替换掉编译条件里的目录。

4、启动docker的命令里需要把宿主机的视频能力赋予docker容器。

bash 复制代码
--gpus 'all,"capabilities=compute,video,utility"'

参考文档:https://www.cnblogs.com/azureology/p/18290262

User Guide --- container-toolkit 1.10.0 documentation

最后所有依赖和路径设置正确以后。执行./configure的完整命令。会输出完整支持的编码解码器信息,注意看是否包含h264_nvenc。如果包含了就证明设置正确了。

相关推荐
m0_603888713 小时前
Stable Diffusion Models are Secretly Good at Visual In-Context Learning
人工智能·ai·stable diffusion·论文速览
CF5245 小时前
深入解析Prompt缓存机制:原理、优化与实践经验
ai
ai绘画-安安妮10 小时前
零基础学LangChain:核心概念与基础组件解析
人工智能·学习·ai·程序员·langchain·大模型·转行
weiwei2284410 小时前
CUDA编程初探
gpu·cuda
chenchao_shenzhen15 小时前
RK3568嵌入式音视频硬件编解码4K 60帧 rkmpp FFmpeg7.1 音视频开发
ffmpeg·音视频·rk3588·音视频开发·嵌入式开发·瑞芯微rk3568·硬件编解码
MicrosoftReactor17 小时前
技术速递|通过 GitHub Models 在 Actions 中实现项目自动化
ai·自动化·github·copilot
爱刘温柔的小猪17 小时前
openai-agent使用本地模型并进行流式输出
python·ai
_多拉不懂A梦1 天前
FFmepg源码系列-avformat_open_input()
c++·ffmpeg·音视频
m0_603888711 天前
LLaMA-Adapter V2 Parameter-Efficient Visual Instruction Model
人工智能·深度学习·ai·llama·论文速览
Elastic 中国社区官方博客1 天前
超越相似名称:Elasticsearch semantic text 如何在简洁、高效、集成方面超越 OpenSearch semantic 字段
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索