LLMs 的记忆和信息检索服务器 Motorhead

LLMs 的记忆和信息检索服务器 Motorhead

  • [1. 为什么使用 Motorhead?](#1. 为什么使用 Motorhead?)
  • [2. 通过 Docker 启动 Motorhead](#2. 通过 Docker 启动 Motorhead)
  • [3. Github 地址](#3. Github 地址)
  • [4. python 使用示例地址](#4. python 使用示例地址)

1. 为什么使用 Motorhead?

使用 LLMs构建聊天应用程序时,每次都必须构建记忆处理。Motorhead是协助该过程的服务器。

它提供了 4 个简单的 API:

  • GET /sessions/:id/memory 返回最多 MAX_WINDOW_SIZE 的 messages
json 复制代码
{
    "messages": [
        {
            "role": "AI",
            "content": "Electronic music and salsa are two very different genres of music, and the way people dance to them is also quite different."
        },
        {
            "role": "Human",
            "content": "how does it compare to salsa?"
        },
        {
            "role": "AI",
            "content": "Electronic music is a broad genre that encompasses many different styles, so there is no one \"right\" way to dance to it."
        },
        {
            "role": "Human",
            "content": "how do you dance electronic music?"
        },
        {
            "role": "AI",
            "content": "Colombia has a vibrant electronic music scene, and there are many talented DJs and producers who have gained international recognition."
        },
        {
            "role": "Human",
            "content": "What are some famous djs from Colombia?"
        },
        {
            "role": "AI",
            "content": "Baum opened its doors in 2014 and has quickly become one of the most popular clubs for electronic music in Bogotá."
        }
    ],
    "context": "The conversation covers topics such as clubs for electronic music in Bogotá, popular tourist attractions in the city, and general information about Colombia. The AI provides information about popular electronic music clubs such as Baum and Video Club, as well as electronic music festivals that take place in Bogotá. The AI also recommends tourist attractions such as La Candelaria, Monserrate and the Salt Cathedral of Zipaquirá, and provides general information about Colombia's diverse culture, landscape and wildlife.",
    "tokens": 744 // tokens used for incremental summarization
}
  • POST /sessions/:id/memory - 向 Motorhead 发送数组 messages 进行存储
bash 复制代码
curl --location 'localhost:8080/sessions/${SESSION_ID}/memory' \
--header 'Content-Type: application/json' \
--data '{
    "messages": [{ "role": "Human", "content": "ping" }, { "role": "AI", "content": "pong" }]
}'

存储消息时,可以使用现有会话或新 SESSION_ID 会话,如果会话以前不存在,则会自动创建会话。

(可选) context 如果需要从其他数据存储加载,则可以将其送入。

  • DELETE /sessions/:id/memory - 删除会话的消息列表。

A max window_size is set for the LLM to keep track of the conversation. Once that max is hit, Motorhead will process (window_size / 2 messages) and summarize them. Subsequent summaries, as the messages grow, are incremental.

为跟踪对话设置了 LLM 最大值 window_size 。一旦达到最大值,Motorhead 将处理( window_size / 2 messages)并汇总它们。随着消息的增长,后续摘要是增量的。

  • POST /sessions/:id/retrieval - 使用 VSS 按文本查询进行搜索
bash 复制代码
curl --location 'localhost:8080/sessions/${SESSION_ID}/retrieval' \
--header 'Content-Type: application/json' \
--data '{
    "text": "Generals gathered in their masses, just like witches in black masses"
}'

2. 通过 Docker 启动 Motorhead

复制代码
docker run --rm --name some-redis -p 6379:6379 -d redis
docker run --rm --name motorhead -p 8080:8080 -e PORT=8080 -e REDIS_URL='redis://some-redis:6379' -d ghcr.io/getmetal/motorhead:latest

3. Github 地址

https://github.com/getmetal/motorhead

4. python 使用示例地址

https://github.com/getmetal/motorhead/tree/main/examples/chat-py

p.s. 暂时使用的可能性不大,所以先不做深入研究。

完结!

相关推荐
淮北49411 分钟前
linux系统学习(10.shell基础)
linux·运维·服务器·学习
松岛雾奈.23011 分钟前
机器学习--KNN算法中的距离、范数、正则化
人工智能·算法·机器学习
程途拾光15828 分钟前
用流程图优化工作流:快速识别冗余环节,提升效率
大数据·论文阅读·人工智能·流程图·论文笔记
Lab4AI大模型实验室29 分钟前
【Github热门项目】DeepSeek-OCR项目上线即突破7k+星!突破10倍无损压缩,重新定义文本-视觉信息处理
人工智能·github·deepseek-ocr
Brduino脑机接口技术答疑33 分钟前
支持向量机(SVM)在脑电情绪识别中的学术解析与研究进展
人工智能·算法·机器学习·支持向量机·数据分析
北京耐用通信44 分钟前
从‘卡壳’到‘丝滑’:耐达讯自动化PROFIBUS光纤模块如何让RFID读写器实现‘零延迟’物流追踪?”
网络·人工智能·科技·物联网·网络协议·自动化
xier_ran1 小时前
深度学习:Mini-batch 大小选择与 SGD 和 GD
人工智能·算法·机器学习
CodeLiving1 小时前
MCP学习三——MCP相关概念
人工智能·mcp
Gitpchy1 小时前
简单CNN——作业(补充)
人工智能·神经网络·cnn
齐齐大魔王1 小时前
深度学习系列(二)
人工智能·深度学习