通过与chatGPT交流实现零样本事件抽取

1、写作动机:

近来的大规模语言模型(例如Chat GPT)在零样本设置下取得了很好的表现,这启发作者探索基于提示的方法来解决零样本IE任务。

2、主要贡献:

提出了基于chatgpt的多阶段的信息抽取方法:在第一阶段找出可能存在于句子中的相应元素类型。然后在第二阶段,对第一阶段中的每个元素类型执行链式信息抽取。每个阶段都采用了多轮QA过程。在每一轮中,基于设计的模板和先前提取的信息构造提示,作为输入向ChatGPT提问。最后,将每一轮的结果组合成结构化数据。

3、方法:

4、实验结果:

PaddleNLP LIC2021 EE、 Text2event

相关推荐
kadog几秒前
PubMed PDF下载 cloudpmc-viewer-pow逆向
前端·javascript·人工智能·爬虫·pdf
亿坊电商19 分钟前
AI数字人多模态技术如何提升用户体验?
人工智能·ux·ai数字人
不吃香菜?1 小时前
PyTorch 实现食物图像分类实战:从数据处理到模型训练
人工智能·深度学习
Jackilina_Stone1 小时前
【论文阅读】平滑量化:对大型语言模型进行准确高效的训练后量化
人工智能·llm·量化·论文阅读笔记
-曾牛1 小时前
企业级AI开发利器:Spring AI框架深度解析与实战
java·人工智能·python·spring·ai·rag·大模型应用
TMT星球1 小时前
商汤绝影生成式AI汽车新品亮相上海车展,引领AI汽车创新潮流
人工智能·汽车
爱的叹息2 小时前
DeepSeek 大模型 + LlamaIndex + MySQL 数据库 + 知识文档 实现简单 RAG 系统
数据库·人工智能·mysql·langchain
PeterOne2 小时前
Trae MCP + Obsidian 集成如何缓解开发者的时间损耗
人工智能·trae
sduwcgg2 小时前
kaggle配置
人工智能·python·机器学习
DolphinScheduler社区2 小时前
白鲸开源与亚马逊云科技携手推动AI-Ready数据架构创新
人工智能·科技·开源·aws·白鲸开源·whalestudio