通过与chatGPT交流实现零样本事件抽取

1、写作动机:

近来的大规模语言模型(例如Chat GPT)在零样本设置下取得了很好的表现,这启发作者探索基于提示的方法来解决零样本IE任务。

2、主要贡献:

提出了基于chatgpt的多阶段的信息抽取方法:在第一阶段找出可能存在于句子中的相应元素类型。然后在第二阶段,对第一阶段中的每个元素类型执行链式信息抽取。每个阶段都采用了多轮QA过程。在每一轮中,基于设计的模板和先前提取的信息构造提示,作为输入向ChatGPT提问。最后,将每一轮的结果组合成结构化数据。

3、方法:

4、实验结果:

PaddleNLP LIC2021 EE、 Text2event

相关推荐
CoderIsArt1 分钟前
三大主流智能体框架解析
人工智能
民乐团扒谱机6 分钟前
【微实验】机器学习之集成学习 GBDT和XGBoost 附 matlab仿真代码 复制即可运行
人工智能·机器学习·matlab·集成学习·xgboost·gbdt·梯度提升树
Coder_Boy_7 分钟前
Deeplearning4j+ Spring Boot 电商用户复购预测案例中相关概念
java·人工智能·spring boot·后端·spring
芷栀夏10 分钟前
CANN ops-math:揭秘异构计算架构下数学算子的低延迟高吞吐优化逻辑
人工智能·深度学习·神经网络·cann
L5434144612 分钟前
告别代码堆砌匠厂架构让你的系统吞吐量翻倍提升
大数据·人工智能·架构·自动化·rpa
孤狼warrior13 分钟前
YOLO目标检测 一千字解析yolo最初的摸样 模型下载,数据集构建及模型训练代码
人工智能·python·深度学习·算法·yolo·目标检测·目标跟踪
凯子坚持 c14 分钟前
构建企业级 AI 工厂:基于 CANN `cann-mlops-suite` 的端到端 MLOps 实战
人工智能
Elwin Wong15 分钟前
浅析OpenClaw:从“贾维斯”梦想看下一代 AI 操作系统的架构演进
人工智能·agent·clawdbot·moltbot·openclaw
Rorsion17 分钟前
PyTorch实现线性回归
人工智能·pytorch·线性回归
AI资源库17 分钟前
OpenClaw:159K Star的开源AI助手正在重新定义“个人AI“的边界
人工智能·语言模型