应用案例 | 基于三维机器视觉的汽车副车架在线测量解决方案

在汽车制造领域中,精确的测量是确保产品质量和生产效率的关键。随着科技的不断进步,测量技术也在不断精进。

副车架是汽车底盘的重要组成部分,负责支撑引擎,是车辆结构中至关重要的组成部分之一,其制造质量直接关系到汽车的安全性和性能。

目前,基于3D视觉的副车架在线测量技术迅猛发展。通过这项技术,制造企业可以实现全面的自动化和数字化生产环节,提高生产效率和工作效率。同时减少人为误差,提升产品质量和一致性。

Part.1 副车架在线测量难题

由于副车架形状不一,尺寸大,表面局部区域还存在强反光,需要对孔位、孔径等关键尺寸进行高精度测量。

传统的测量方法通常指人工测量。该检测方法需要专业的测量技术人员进行操作和解读结果,且会在进行准备、设置和操作的时候,耗费大量时间。由于非常依赖操作人员的技能和经验,常常会因为手抖、眼睛疲劳或主观判断等人为因素,导致测量结果不准确或不一致。

Part.2 解决方案

该解决方案包括:3D视觉传感器、机械臂、控制系统和抓取工具。

1.3D视觉传感器:3D视觉视觉传感器选用显扬科技HY-MX,能够实时获取工作区域内副车架的三维信息,可对暗色、反光的副轴生成高质量点云数据,实现对副车架进行在线测量和质量控制。

2.机械臂:机械臂用于准确地定位和移动3D扫描设备,使3D扫描设备以多个角度、不同方向对副车架进行全方位扫描,获取副车架表面详细的点云数据。

3.控制系统:控制系统与3D相机和计算机视觉软件集成,调整机械臂的运动轨迹,以适应工件的不同形状和位置。同时,提供编程接口,可以根据实际需求进行定制化操作。

基于3D视觉的副车架在线测量应用方案使用三维视觉技术对副车架进行全方位扫描,能够时获取副车架的几何形状和尺寸信息,实现非接触式、快速且高精度的测量,进一步帮助生产企业提高副车架制造质量和效率,实现自动化升级。

Part.3 工作流程

  1. 数据采集:3D视觉系统开始采集工作区域内副车架的点云数据,捉副车架表面的几何形状和细节。

2.数据处理:实时算法对采集到的点云数据进行处理,生成副车架的三维模型。

3.计算机视觉技术:应用计算机视觉技术对副车架进行特征提取、边缘检测、表面分割等操作,识别副车架的关键特征点,为后续的测量和分析提供基础。

4.深度学习模型:利用深度学习算法训练模型,识别副车架的不同部件、检测缺陷或变形。

5.实时测量与反馈:设计实时测量系统,在副车架通过测量站点时进行快速而准确的测量。通过实时反馈,及时通知生产人员副车架的制造状态,便于快速调整生产参数。

6.数据管理与存储:建立完善的数据管理系统,存储每个副车架的3D数据、测量结果以及可能的缺陷信息。

Part.4 方案优势

1.高精度:先进测量算法,精准完成圆孔、螺纹孔、螺柱、腰孔等关键特征的高精度测量。

2.适应性强:多相机多机器人协同工作,灵活提取不同位置的特征,帮助实现汽车生产线的自动化和高效化,降低生产成本。

3.严格检测:提供实时监测和反馈,及时纠正潜在问题,提高生产效率,把控副车架制造质量。

相关推荐
葫三生1 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程5 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝5 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion7 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周7 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享9 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜9 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿9 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程