应用案例 | 基于三维机器视觉的汽车副车架在线测量解决方案

在汽车制造领域中,精确的测量是确保产品质量和生产效率的关键。随着科技的不断进步,测量技术也在不断精进。

副车架是汽车底盘的重要组成部分,负责支撑引擎,是车辆结构中至关重要的组成部分之一,其制造质量直接关系到汽车的安全性和性能。

目前,基于3D视觉的副车架在线测量技术迅猛发展。通过这项技术,制造企业可以实现全面的自动化和数字化生产环节,提高生产效率和工作效率。同时减少人为误差,提升产品质量和一致性。

Part.1 副车架在线测量难题

由于副车架形状不一,尺寸大,表面局部区域还存在强反光,需要对孔位、孔径等关键尺寸进行高精度测量。

传统的测量方法通常指人工测量。该检测方法需要专业的测量技术人员进行操作和解读结果,且会在进行准备、设置和操作的时候,耗费大量时间。由于非常依赖操作人员的技能和经验,常常会因为手抖、眼睛疲劳或主观判断等人为因素,导致测量结果不准确或不一致。

Part.2 解决方案

该解决方案包括:3D视觉传感器、机械臂、控制系统和抓取工具。

1.3D视觉传感器:3D视觉视觉传感器选用显扬科技HY-MX,能够实时获取工作区域内副车架的三维信息,可对暗色、反光的副轴生成高质量点云数据,实现对副车架进行在线测量和质量控制。

2.机械臂:机械臂用于准确地定位和移动3D扫描设备,使3D扫描设备以多个角度、不同方向对副车架进行全方位扫描,获取副车架表面详细的点云数据。

3.控制系统:控制系统与3D相机和计算机视觉软件集成,调整机械臂的运动轨迹,以适应工件的不同形状和位置。同时,提供编程接口,可以根据实际需求进行定制化操作。

基于3D视觉的副车架在线测量应用方案使用三维视觉技术对副车架进行全方位扫描,能够时获取副车架的几何形状和尺寸信息,实现非接触式、快速且高精度的测量,进一步帮助生产企业提高副车架制造质量和效率,实现自动化升级。

Part.3 工作流程

  1. 数据采集:3D视觉系统开始采集工作区域内副车架的点云数据,捉副车架表面的几何形状和细节。

2.数据处理:实时算法对采集到的点云数据进行处理,生成副车架的三维模型。

3.计算机视觉技术:应用计算机视觉技术对副车架进行特征提取、边缘检测、表面分割等操作,识别副车架的关键特征点,为后续的测量和分析提供基础。

4.深度学习模型:利用深度学习算法训练模型,识别副车架的不同部件、检测缺陷或变形。

5.实时测量与反馈:设计实时测量系统,在副车架通过测量站点时进行快速而准确的测量。通过实时反馈,及时通知生产人员副车架的制造状态,便于快速调整生产参数。

6.数据管理与存储:建立完善的数据管理系统,存储每个副车架的3D数据、测量结果以及可能的缺陷信息。

Part.4 方案优势

1.高精度:先进测量算法,精准完成圆孔、螺纹孔、螺柱、腰孔等关键特征的高精度测量。

2.适应性强:多相机多机器人协同工作,灵活提取不同位置的特征,帮助实现汽车生产线的自动化和高效化,降低生产成本。

3.严格检测:提供实时监测和反馈,及时纠正潜在问题,提高生产效率,把控副车架制造质量。

相关推荐
ai产品老杨几秒前
报警推送消息升级的名厨亮灶开源了。
vue.js·人工智能·安全·开源·音视频
智源研究院官方账号1 分钟前
智源研究院与安谋科技达成战略合作,共建开源AI“芯”生态
人工智能·开源
积兆科技8 分钟前
从汽车企业案例看仓网规划的关键步骤(视频版)
人工智能·算法·汽车·制造
Robot2518 分钟前
「地平线」副总裁余轶南与「理想汽车」智驾产品总监赵哲伦联手创业,入局具身智能赛道!
大数据·人工智能·机器人·汽车
智能汽车人10 分钟前
行业分析---造车新势力之零跑汽车
人工智能·自动驾驶·汽车
山顶夕景28 分钟前
【ML】机器学习中常见的25个数学公式
人工智能·数学·机器学习
Zik----32 分钟前
Anaconda搭建Python虚拟环境并在Pycharm中配置(小白也能懂)
开发语言·人工智能·python·机器学习·pycharm
凡人的AI工具箱1 小时前
每天40分玩转Django:Django缓存
数据库·人工智能·后端·python·缓存·django
Hoper.J1 小时前
微调 BERT:实现抽取式问答
人工智能·深度学习·自然语言处理·llm·bert
PeterClerk1 小时前
NLP基础知识 - 向量化
人工智能·自然语言处理