【学习笔记】Python 环境隔离

目录

  • 前言
  • venv
    • [venv 环境管理](#venv 环境管理)
    • [venv 包管理](#venv 包管理)
  • [virtualenv 以及 virtualenvwrapper](#virtualenv 以及 virtualenvwrapper)
    • 安装
    • [virtualenvwrapper 环境管理](#virtualenvwrapper 环境管理)
    • [virtualenvwrapper 包管理](#virtualenvwrapper 包管理)
  • conda
    • [conda 环境管理](#conda 环境管理)
    • [conda 包管理](#conda 包管理)
  • 总结
  • 参考资料

Python 作为最常用的脚本语言,有着非常丰富的第三方库,但是这也导致了 Python 的环境管理非常必要。本文将介绍 Python 的几个常用环境管理工具,以及如何使用它们。

前言

由于 Python 的第三方库非常丰富,因此在开发过程中,我们可能会使用到很多第三方库。

但是,这些第三方库可能会有不同的版本,而且不同的项目可能会使用不同的版本。

如果我们先在 A 项目中使用了老版本的第三方库,而后续在 B 项目中需要使用新版本的第三方库,覆盖了老版本的第三方库,那么 A 项目就可能会出现问题。

当前,个人使用过的 Python 的环境管理工具主要有 venvvirtualenvvirtualenvwrapperconda

venv

Python 3.3 之后,Python 自带了 venv 工具,是内置的一个模块,用于创建虚拟环境。

venv 环境管理

bash 复制代码
# 创建环境
python -m venv <env_dir>
# 通常在当前目录下创建 .venv 目录作为虚拟环境
python -m venv .venv

# 激活环境,直接调用相应的脚本即可
# Windows CMD
.venv\Scripts\activate.bat
# Windows PowerShell
.venv\Scripts\Activate.ps1
# Linux
.venv\Scripts\activate

# 退出环境
deactivate

# 删除环境,只需要删除相应的目录即可
# Windows
rmdir .venv
# Linux
rm -rf .venv

venv 包管理

激活环境后,直接用 pip 安装、卸载包即可。

virtualenv 以及 virtualenvwrapper

virtualenv 是一个第三方的包,用于创建虚拟环境。
venv 其实就是 virtualenv 的一个子集,相当于被官方收录了,可见其实力。

为了更方便地使用 virtualenv,可以使用 virtualenvwrapper ,它对 virtualenv 进行了封装,提供了更方便的命令。

在 Windows 上,可以使用 virtualenvwrapper-win

安装

bash 复制代码
pip install virtualenv
# Linux
pip install virtualenvwrapper
# Windows
pip install virtualenvwrapper-win

virtualenvwrapper 环境管理

bash 复制代码
# 创建环境
mkvirtualenv <env_name>

# 激活环境(仍然不太兼容最新的 PowerShell)
workon <env_name>

# 退出环境
deactivate

# 删除环境
rmvirtualenv <env_name>

virtualenvwrapper 包管理

激活环境后,直接用 pip 安装、卸载包即可。

conda

conda 是一个开源跨平台语言无关的包管理与环境管理系统。

通常为了方便,可以直接下载包含各种常用软件包的 Anaconda,以及最简环境的 Miniconda

然而,conda 在 Windows 上的使用体验并不好,暂时还不支持新版本的 PowerShell,其官方的 Issue 也有提到这个问题。

所以当前我都是切到 Conmmand Prompt 也就是 CMD 中使用 conda

conda 环境管理

bash 复制代码
# 创建环境
conda create -n <env_name> [python=<python_version>] [package_name]

# 激活环境
conda activate <env_name>

# 退出环境
conda deactivate

# 删除环境
conda remove -n <env_name> --all

conda 包管理

bash 复制代码
conda install <package_name>

conda list

conda remove <package_name>

总结

在 Windows 上,在借助 VScode 的 Python 插件的情况下,使用 venvvirtualenvwrapper 都还不错,可以快速的激活环境。

而在 Linux 上,使用 conda 也是一个不错的选择。

参考资料

本文作者: ywang_wnlo
本文链接: https://ywang-wnlo.github.io/posts/28f3e4d7/
版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

相关推荐
烛阴5 小时前
简单入门Python装饰器
前端·python
好开心啊没烦恼5 小时前
Python 数据分析:numpy,说人话,说说数组维度。听故事学知识点怎么这么容易?
开发语言·人工智能·python·数据挖掘·数据分析·numpy
面朝大海,春不暖,花不开6 小时前
使用 Python 实现 ETL 流程:从文本文件提取到数据处理的全面指南
python·etl·原型模式
2301_805054567 小时前
Python训练营打卡Day59(2025.7.3)
开发语言·python
万千思绪7 小时前
【PyCharm 2025.1.2配置debug】
ide·python·pycharm
微风粼粼9 小时前
程序员在线接单
java·jvm·后端·python·eclipse·tomcat·dubbo
云天徽上9 小时前
【PaddleOCR】OCR表格识别数据集介绍,包含PubTabNet、好未来表格识别、WTW中文场景表格等数据,持续更新中......
python·ocr·文字识别·表格识别·paddleocr·pp-ocrv5
你怎么知道我是队长9 小时前
python-input内置函数
开发语言·python
叹一曲当时只道是寻常9 小时前
Python实现优雅的目录结构打印工具
python
hbwhmama10 小时前
python高级变量XIII
python