【学习笔记】Python 环境隔离

目录

  • 前言
  • venv
    • [venv 环境管理](#venv 环境管理)
    • [venv 包管理](#venv 包管理)
  • [virtualenv 以及 virtualenvwrapper](#virtualenv 以及 virtualenvwrapper)
    • 安装
    • [virtualenvwrapper 环境管理](#virtualenvwrapper 环境管理)
    • [virtualenvwrapper 包管理](#virtualenvwrapper 包管理)
  • conda
    • [conda 环境管理](#conda 环境管理)
    • [conda 包管理](#conda 包管理)
  • 总结
  • 参考资料

Python 作为最常用的脚本语言,有着非常丰富的第三方库,但是这也导致了 Python 的环境管理非常必要。本文将介绍 Python 的几个常用环境管理工具,以及如何使用它们。

前言

由于 Python 的第三方库非常丰富,因此在开发过程中,我们可能会使用到很多第三方库。

但是,这些第三方库可能会有不同的版本,而且不同的项目可能会使用不同的版本。

如果我们先在 A 项目中使用了老版本的第三方库,而后续在 B 项目中需要使用新版本的第三方库,覆盖了老版本的第三方库,那么 A 项目就可能会出现问题。

当前,个人使用过的 Python 的环境管理工具主要有 venvvirtualenvvirtualenvwrapperconda

venv

Python 3.3 之后,Python 自带了 venv 工具,是内置的一个模块,用于创建虚拟环境。

venv 环境管理

bash 复制代码
# 创建环境
python -m venv <env_dir>
# 通常在当前目录下创建 .venv 目录作为虚拟环境
python -m venv .venv

# 激活环境,直接调用相应的脚本即可
# Windows CMD
.venv\Scripts\activate.bat
# Windows PowerShell
.venv\Scripts\Activate.ps1
# Linux
.venv\Scripts\activate

# 退出环境
deactivate

# 删除环境,只需要删除相应的目录即可
# Windows
rmdir .venv
# Linux
rm -rf .venv

venv 包管理

激活环境后,直接用 pip 安装、卸载包即可。

virtualenv 以及 virtualenvwrapper

virtualenv 是一个第三方的包,用于创建虚拟环境。
venv 其实就是 virtualenv 的一个子集,相当于被官方收录了,可见其实力。

为了更方便地使用 virtualenv,可以使用 virtualenvwrapper ,它对 virtualenv 进行了封装,提供了更方便的命令。

在 Windows 上,可以使用 virtualenvwrapper-win

安装

bash 复制代码
pip install virtualenv
# Linux
pip install virtualenvwrapper
# Windows
pip install virtualenvwrapper-win

virtualenvwrapper 环境管理

bash 复制代码
# 创建环境
mkvirtualenv <env_name>

# 激活环境(仍然不太兼容最新的 PowerShell)
workon <env_name>

# 退出环境
deactivate

# 删除环境
rmvirtualenv <env_name>

virtualenvwrapper 包管理

激活环境后,直接用 pip 安装、卸载包即可。

conda

conda 是一个开源跨平台语言无关的包管理与环境管理系统。

通常为了方便,可以直接下载包含各种常用软件包的 Anaconda,以及最简环境的 Miniconda

然而,conda 在 Windows 上的使用体验并不好,暂时还不支持新版本的 PowerShell,其官方的 Issue 也有提到这个问题。

所以当前我都是切到 Conmmand Prompt 也就是 CMD 中使用 conda

conda 环境管理

bash 复制代码
# 创建环境
conda create -n <env_name> [python=<python_version>] [package_name]

# 激活环境
conda activate <env_name>

# 退出环境
conda deactivate

# 删除环境
conda remove -n <env_name> --all

conda 包管理

bash 复制代码
conda install <package_name>

conda list

conda remove <package_name>

总结

在 Windows 上,在借助 VScode 的 Python 插件的情况下,使用 venvvirtualenvwrapper 都还不错,可以快速的激活环境。

而在 Linux 上,使用 conda 也是一个不错的选择。

参考资料

本文作者: ywang_wnlo
本文链接: https://ywang-wnlo.github.io/posts/28f3e4d7/
版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

相关推荐
YJlio几秒前
杨利杰YJlio|博客导航目录(专栏总览 + 推荐阅读路线)
开发语言·python·pdf
Swizard1 分钟前
数据不够代码凑?用 Albumentations 让你的 AI 模型“看”得更广,训练快 10 倍!
python·算法·ai·训练
智算菩萨5 分钟前
【Python机器学习】决策树与随机森林:解释性与鲁棒性的平衡
python·决策树·机器学习
宁大小白5 分钟前
pythonstudy Day44
python·机器学习
羸弱的穷酸书生20 分钟前
今天跟 AI学了一手
python
不要em0啦21 分钟前
从0开始学python:声明
python
ha_lydms23 分钟前
4、Spark 函数_m/n/o/p/q/r
大数据·数据库·python·sql·spark·数据处理·dataworks
Pyeako34 分钟前
机器学习--集成学习之随机森林&贝叶斯算法
python·算法·随机森林·机器学习·集成学习·贝叶斯算法
reasonsummer35 分钟前
【人工智能-03-06】20251227 人工智能第二学期课程 下载课件《教育设计中的信息化》中的“多人编辑文件” 的图片,然后合并PDF
python
.似水1 小时前
Python面向对象
开发语言·python