RabbitMQ-高级篇

服务异步通信-高级篇

消息队列在使用过程中,面临着很多实际问题需要思考:

1.消息可靠性

消息从发送,到消费者接收,会经理多个过程:

其中的每一步都可能导致消息丢失,常见的丢失原因包括:

  • 发送时丢失:
    • 生产者发送的消息未送达exchange
    • 消息到达exchange后未到达queue
  • MQ宕机,queue将消息丢失
  • consumer接收到消息后未消费就宕机

针对这些问题,RabbitMQ分别给出了解决方案:

  • 生产者确认机制
  • mq持久化
  • 消费者确认机制
  • 失败重试机制

下面我们就通过案例来演示每一个步骤。

首先,导入课前资料提 ·1供的demo工程:

项目结构如下:

1.1.生产者消息确认

RabbitMQ提供了publisher confirm机制来避免消息发送到MQ过程中丢失。这种机制必须给每个消息指定一个唯一ID。消息发送到MQ以后,会返回一个结果给发送者,表示消息是否处理成功。

返回结果有两种方式:

  • publisher-confirm,发送者确认
    • 消息成功投递到交换机,返回ack
    • 消息未投递到交换机,返回nack
  • publisher-return,发送者回执
    • 消息投递到交换机了,但是没有路由到队列。返回ACK,及路由失败原因。

注意:

1.1.1.修改配置

首先,修改publisher服务中的application.yml文件,添加下面的内容:

yaml 复制代码
spring:
  rabbitmq:
    publisher-confirm-type: correlated
    publisher-returns: true
    template:
      mandatory: true
   

说明:

  • publish-confirm-type:开启publisher-confirm,这里支持两种类型:
    • simple:同步等待confirm结果,直到超时
    • correlated:异步回调,定义ConfirmCallback,MQ返回结果时会回调这个ConfirmCallback
  • publish-returns:开启publish-return功能,同样是基于callback机制,不过是定义ReturnCallback
  • template.mandatory:定义消息路由失败时的策略。true,则调用ReturnCallback;false:则直接丢弃消息

1.1.2.定义ReturnConfirm 回调

每个RabbitTemplate只能配置一个ReturnCallback,因此需要在项目加载时配置:

修改publisher服务,添加一个:

java 复制代码
package cn.itcast.mq.config;

@Slf4j
@Configuration
public class CommonConfig implements ApplicationContextAware {
    @Override
    public void setApplicationContext(ApplicationContext applicationContext) throws BeansException {
        // 获取RabbitTemplate
        RabbitTemplate rabbitTemplate = applicationContext.getBean(RabbitTemplate.class);
        // 设置ReturnCallback
        rabbitTemplate.setReturnCallback((message, replyCode, replyText, exchange, routingKey) -> {
            // 投递失败,记录日志
            log.info("消息发送失败,应答码{},原因{},交换机{},路由键{},消息{}",
                    replyCode, replyText, exchange, routingKey, message.toString());
            // 如果有业务需要,可以重发消息
        });

        rabbitTemplate.setConfirmCallback(new RabbitTemplate.ConfirmCallback() {
            /**
             * @param correlationData  自定义的数据
             * @param ack  是否确认
             * @param cause  原因
             */
            @Override
            public void confirm(CorrelationData correlationData, boolean ack, String cause) {
                    if(ack){
                        // 3.1.ack,消息成功
                        log.debug("消息发送成功, ID:{}", correlationData.getId());
                    }else{
                        // 3.2.nack,消息失败
                        log.error("消息发送失败, ID:{}, 原因{}",correlationData.getId(), cause);
                    }
            }
        });
    }
    
     @Bean
    public DirectExchange simpleExchange(){
        // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除
        return new DirectExchange("simple.direct", false, false);
    }
    @Bean
    public Queue simpleQueue(){
        return new Queue("simple.queue",false);
    }
    @Bean
    public Binding binding(){
        return BindingBuilder.bind(simpleQueue()).to(simpleExchange()).with("simple");
    }
}

1.1.3.发送消息测试

ConfirmCallback可以在发送消息时指定,因为每个业务处理confirm成功或失败的逻辑不一定相同。

在publisher服务的cn.itcast.mq.spring.SpringAmqpTest类中,定义一个单元测试方法:

java 复制代码
public void testSendMessage2SimpleQueue() throws InterruptedException {
    // 1.消息体
    String message = "hello, spring amqp!";
    // 2.全局唯一的消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 4.发送消息
    rabbitTemplate.convertAndSend("task.direct", "task", message, correlationData);
    // 休眠一会儿,等待ack回执
    Thread.sleep(2000);
}
  • 设置不存在的交换机尝试发送 交换机: task.direct 路由: task

  • 结果: 发送确认回调返回false消息没有正确发送到MQ中

  • ​ return回调未触发

  • 设置存在的交换机,不存在的路由尝试发送 交换机: simple.direct 路由: task

  • 结果: 发送确认回调返回true消息已经发送到MQ中

  • ​ return回调触发,返回了消息,并提示路由错误

  • 设置正确的交换机,正确的路由 交换机: simple.direct 路由: simple

  • 结果: 发送确认回调返回true消息已经发送到MQ中

  • ​ return回调未触发


结论:

通过发送确认 和 消息返还机制可以确保消息 一定能够投递到指定的队列中,如果消息没有投递成功 或返还了

也可以通过定时重新投递的方式进行补偿


1.2.消息持久化

生产者确认可以确保消息投递到RabbitMQ的队列中,但是消息发送到RabbitMQ以后,如果突然宕机,也可能导致消息丢失。

要想确保消息在RabbitMQ中安全保存,必须开启消息持久化机制。

  • 交换机持久化
  • 队列持久化
  • 消息持久化

1.2.1.交换机持久化

RabbitMQ中交换机默认是非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

java 复制代码
@Bean
public DirectExchange simpleExchange(){
    // 三个参数:交换机名称、是否持久化、当没有queue与其绑定时是否自动删除
    return new DirectExchange("simple.direct", true, false);
}

事实上,默认情况下,由SpringAMQP声明的交换机都是持久化的。

可以在RabbitMQ控制台看到持久化的交换机都会带上D的标示:

1.2.2.队列持久化

RabbitMQ中队列如果设置成非持久化的,mq重启后就丢失。

SpringAMQP中可以通过代码指定交换机持久化:

java 复制代码
	@Bean
    public Queue simpleQueue(){
        return new Queue("simple.queue",true);
    }

事实上,默认情况下,由SpringAMQP声明的队列都是持久化的。

可以在RabbitMQ控制台看到持久化的队列都会带上D的标示:

1.2.3.消息持久化

利用SpringAMQP发送消息时,可以设置消息的属性(MessageProperties),指定delivery-mode:

  • 1:非持久化
  • 2:持久化

用java代码指定:

默认情况下,SpringAMQP发出的任何消息都是持久化的,不用特意指定。

java 复制代码
	@Test
    public void testSendMessage2SimpleQueue() throws InterruptedException {
        String routingKey = "simple";
        String message = "hello, spring amqp!";
        // 自定义数据
        CorrelationData data = new CorrelationData(UUID.randomUUID().toString());
        // 发送消息
        rabbitTemplate.convertAndSend("simple.direct", routingKey, message, new MessagePostProcessor() {
            // 后置处理消息
            @Override
            public Message postProcessMessage(Message message) throws AmqpException {
                // 设置消息的持久化方式
                message.getMessageProperties().setDeliveryMode(MessageDeliveryMode.NON_PERSISTENT);
                return message;
            }
        },data);
    }

1.3.消费者消息确认

RabbitMQ是阅后即焚机制,RabbitMQ确认消息被消费者消费后会立刻删除。

而RabbitMQ是通过消费者回执来确认消费者是否成功处理消息的:消费者获取消息后,应该向RabbitMQ发送ACK回执,表明自己已经处理消息。

设想这样的场景:

  • 1)RabbitMQ投递消息给消费者
  • 2)消费者获取消息后,返回ACK给RabbitMQ
  • 3)RabbitMQ删除消息
  • 4)消费者宕机,消息尚未处理

这样,消息就丢失了。因此消费者返回ACK的时机非常重要。

而SpringAMQP则允许配置三种确认模式:

•manual:手动ack,需要在业务代码结束后,调用api发送ack。

•auto:自动ack,由spring监测listener代码是否出现异常,没有异常则返回ack;抛出异常则返回nack

•none:关闭ack,MQ假定消费者获取消息后会成功处理,因此消息投递后立即被删除

由此可知:

  • none模式下,消息投递是不可靠的,可能丢失
  • auto模式类似事务机制,出现异常时返回nack,消息回滚到mq;没有异常,返回ack
  • manual:自己根据业务情况,判断什么时候该ack

一般,我们都是使用默认的auto即可。

1.3.1.演示none模式

修改consumer服务的application.yml文件,添加下面内容:

yaml 复制代码
spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: NONE # 关闭ack

修改consumer服务的SpringRabbitListener类中的方法,模拟一个消息处理异常:

java 复制代码
@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue(String msg) {
    log.info("消费者接收到simple.queue的消息:【{}】", msg);
    // 模拟异常
    System.out.println(1 / 0);
    log.debug("消息处理完成!");
}

测试可以发现,当消息处理抛异常时,消息依然被RabbitMQ删除了。

1.3.2.演示auto模式

再次把确认机制修改为auto:

yaml 复制代码
spring:
  rabbitmq:
    listener:
      simple:
        acknowledge-mode: AUTO # 关闭ack

在异常位置打断点,再次发送消息,程序卡在断点时,可以发现此时消息状态为unack(未确定状态):

抛出异常后,因为Spring会自动返回nack,所以消息恢复至Ready状态,并且没有被RabbitMQ删除:

1.4.消费失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者,然后再次异常,再次requeue,无限循环,导致mq的消息处理飙升,带来不必要的压力:

怎么办呢?

1.4.1.本地重试

我们可以利用Spring的retry机制,在消费者出现异常时利用本地重试,而不是无限制的requeue到mq队列。

修改consumer服务的application.yml文件,添加内容:

yaml 复制代码
spring:
  rabbitmq:
    listener:
      simple:
        retry:
          enabled: true # 开启消费者失败重试
          initial-interval: 1000ms # 初识的失败等待时长为1秒
          multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-interval
          max-attempts: 3 # 最大重试次数
          stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

重启consumer服务,重复之前的测试。可以发现:

  • 在重试3次后,SpringAMQP会抛出异常AmqpRejectAndDontRequeueException,说明本地重试触发了
  • 查看RabbitMQ控制台,发现消息被删除了,说明最后SpringAMQP返回的是ack,mq删除消息了

结论:

  • 开启本地重试时,消息处理过程中抛出异常,不会requeue到队列,而是在消费者本地重试
  • 重试达到最大次数后,Spring会返回ack,消息会被丢弃

1.4.2.失败策略

在之前的测试中,达到最大重试次数后,消息会被丢弃,这是由Spring内部机制决定的。

在开启重试模式后,重试次数耗尽,如果消息依然失败,则需要有MessageRecovery接口来处理,它包含三种不同的实现:

  • RejectAndDontRequeueRecoverer:重试耗尽后,直接reject,丢弃消息。默认就是这种方式

  • ImmediateRequeueMessageRecoverer:重试耗尽后,返回nack,消息重新入队

  • RepublishMessageRecoverer:重试耗尽后,将失败消息投递到指定的交换机

比较优雅的一种处理方案是RepublishMessageRecoverer,失败后将消息投递到一个指定的,专门存放异常消息的队列,后续由人工集中处理。

1)在consumer服务中定义处理失败消息的交换机和队列

java 复制代码
@Bean
public DirectExchange errorMessageExchange(){
    return new DirectExchange("error.direct");
}
@Bean
public Queue errorQueue(){
    return new Queue("error.queue", true);
}
@Bean
public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
    return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
}

2)定义一个RepublishMessageRecoverer,关联队列和交换机

java 复制代码
@Bean
public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
    return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
}

完整代码:

java 复制代码
package cn.itcast.mq.config;

import org.springframework.amqp.core.Binding;
import org.springframework.amqp.core.BindingBuilder;
import org.springframework.amqp.core.DirectExchange;
import org.springframework.amqp.core.Queue;
import org.springframework.amqp.rabbit.core.RabbitTemplate;
import org.springframework.amqp.rabbit.retry.MessageRecoverer;
import org.springframework.amqp.rabbit.retry.RepublishMessageRecoverer;
import org.springframework.context.annotation.Bean;

@Configuration
public class ErrorMessageConfig {
    @Bean
    public DirectExchange errorMessageExchange(){
        return new DirectExchange("error.direct");
    }
    @Bean
    public Queue errorQueue(){
        return new Queue("error.queue", true);
    }
    @Bean
    public Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){
        return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");
    }

    @Bean
    public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
        return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
    }
}

1.5.总结

如何确保RabbitMQ消息的可靠性?

  • 开启生产者确认机制,确保生产者的消息能到达队列
  • 开启持久化功能,确保消息未消费前在队列中不会丢失
  • 开启消费者确认机制为auto,由spring确认消息处理成功后完成ack
  • 开启消费者失败重试机制,并设置MessageRecoverer,多次重试失败后将消息投递到异常交换机,交由人工处理

2.死信交换机

2.1.初识死信交换机

2.1.1.什么是死信交换机

什么是死信?

当一个队列中的消息满足下列情况之一时,可以成为死信(dead letter):

  • 消费者使用basic.reject或 basic.nack声明消费失败,并且消息的requeue参数设置为false
  • 消息是一个过期消息,超时无人消费
  • 要投递的队列消息满了,无法投递

如果这个包含死信的队列配置了dead-letter-exchange属性,指定了一个交换机,那么队列中的死信就会投递到这个交换机中,而这个交换机称为死信交换机(Dead Letter Exchange,检查DLX)。

如图,一个消息被消费者拒绝了,变成了死信:

因为simple.queue绑定了死信交换机 dl.direct,因此死信会投递给这个交换机:

如果这个死信交换机也绑定了一个队列,则消息最终会进入这个存放死信的队列:

另外,队列将死信投递给死信交换机时,必须知道两个信息:

  • 死信交换机名称
  • 死信交换机与死信队列绑定的RoutingKey

这样才能确保投递的消息能到达死信交换机,并且正确的路由到死信队列。

2.1.2.利用死信交换机接收死信(拓展)

在失败重试策略中,默认的RejectAndDontRequeueRecoverer会在本地重试次数耗尽后,发送reject给RabbitMQ,消息变成死信,被丢弃。

在consumer中CommonConfig 修改消息策略

java 复制代码
   	// 修改 失败消息策略
	@Bean
    public MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){
//        return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");
        return new RejectAndDontRequeueRecoverer();
    }

我们可以给simple.queue添加一个死信交换机,给死信交换机绑定一个队列。这样消息变成死信后也不会丢弃,而是最终投递到死信交换机,路由到与死信交换机绑定的队列。

我们在producer服务CommonConfig中,定义一组死信交换机、死信队列:

java 复制代码
	@Bean
    public Queue simpleQueue(){
        return QueueBuilder.durable("simple.queue") // 指定队列名称,并持久化
                .deadLetterExchange("dl.direct") // 指定死信交换机
                .build();
    }
    // 声明死信交换机 dl.direct
    @Bean
    public DirectExchange dlExchange(){
        return new DirectExchange("dl.direct", true, false);
    }
    // 声明存储死信的队列 dl.queue
    @Bean
    public Queue dlQueue(){
        return new Queue("dl.queue", true);
    }
    // 将死信队列 与 死信交换机绑定
    @Bean
    public Binding dlBinding(){
        return BindingBuilder.bind(dlQueue()).to(dlExchange()).with("dl");
    }

注意:

之前我们已经声明过simple.queue队列了,而再次声明的simple.queue 多了些属性。 启动时不会覆盖之前队列,而是会报错,

需要删除simple.queue队列后再次创建

2.1.3.总结

什么样的消息会成为死信?

  • 消息被消费者reject或者返回nack
  • 消息超时未消费
  • 队列满了

死信交换机的使用场景是什么?

  • 如果队列绑定了死信交换机,死信会投递到死信交换机;
  • 可以利用死信交换机收集所有消费者处理失败的消息(死信),交由人工处理,进一步提高消息队列的可靠性。

2.2.TTL

一个队列中的消息如果超时未消费,则会变为死信,超时分为两种情况:

  • 消息所在的队列设置了超时时间
  • 消息本身设置了超时时间

2.2.1.接收超时死信的死信交换机

在consumer服务的SpringRabbitListener中,定义一个新的消费者,并且声明 死信交换机、死信队列:

java 复制代码
@RabbitListener(bindings = @QueueBinding(
    value = @Queue(name = "dl.ttl.queue", durable = "true"),
    exchange = @Exchange(name = "dl.ttl.direct"),
    key = "ttl"
))
public void listenDlQueue(String msg){
    log.info("接收到 dl.ttl.queue的延迟消息:{}", msg);
}

2.2.2.声明一个队列,并且指定TTL

要给队列设置超时时间,需要在声明队列时配置x-message-ttl属性:

java 复制代码
@Bean
public Queue ttlQueue(){
    return QueueBuilder.durable("ttl.queue") // 指定队列名称,并持久化
        .ttl(10000) // 设置队列的超时时间,10秒
        .deadLetterExchange("dl.ttl.direct") // 指定死信交换机
        .build();
}

注意,这个队列设定了死信交换机为dl.ttl.direct

声明交换机,将ttl与交换机绑定:

java 复制代码
@Bean
public DirectExchange ttlExchange(){
    return new DirectExchange("ttl.direct");
}
@Bean
public Binding ttlBinding(){
    return BindingBuilder.bind(ttlQueue()).to(ttlExchange()).with("ttl");
}

发送消息,但是不要指定TTL:

java 复制代码
@Test
public void testTTLQueue() {
    // 创建消息
    String message = "hello, ttl queue";
    // 消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 发送消息
    rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
    // 记录日志
    log.debug("发送消息成功");
}

发送消息的日志:

查看下接收消息的日志:

因为队列的TTL值是10000ms,也就是10秒。可以看到消息发送与接收之间的时差刚好是10秒。

2.2.3.发送消息时,设定TTL

在发送消息时,也可以指定TTL:

java 复制代码
@Test
public void testTTLMsg() {
    // 创建消息
    Message message = MessageBuilder
        .withBody("hello, ttl message".getBytes(StandardCharsets.UTF_8))
        .setExpiration("5000")
        .build();
    // 消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 发送消息
    rabbitTemplate.convertAndSend("ttl.direct", "ttl", message, correlationData);
    log.debug("发送消息成功");
}

查看发送消息日志:

接收消息日志:

这次,发送与接收的延迟只有5秒。说明当队列、消息都设置了TTL时,任意一个到期就会成为死信。

2.2.4.总结

消息超时的两种方式是?

  • 给队列设置ttl属性,进入队列后超过ttl时间的消息变为死信
  • 给消息设置ttl属性,队列接收到消息超过ttl时间后变为死信

如何实现发送一个消息20秒后消费者才收到消息?

  • 给消息的目标队列指定死信交换机
  • 将消费者监听的队列绑定到死信交换机
  • 发送消息时给消息设置超时时间为20秒

2.3.延迟队列

利用TTL结合死信交换机,我们实现了消息发出后,消费者延迟收到消息的效果。这种消息模式就称为延迟队列(Delay Queue)模式。

延迟队列的使用场景包括:

  • 延迟发送短信
  • 用户下单,如果用户在15 分钟内未支付,则自动取消
  • 预约工作会议,20分钟后自动通知所有参会人员

因为延迟队列的需求非常多,所以RabbitMQ的官方也推出了一个插件,原生支持延迟队列效果。

这个插件就是DelayExchange插件。参考RabbitMQ的插件列表页面:https://www.rabbitmq.com/community-plugins.html

使用方式可以参考官网地址:https://blog.rabbitmq.com/posts/2015/04/scheduling-messages-with-rabbitmq

2.3.1.安装DelayExchange插件

参考课前资料:

2.3.2.DelayExchange原理

DelayExchange需要将一个交换机声明为delayed类型。当我们发送消息到delayExchange时,流程如下:

  • 接收消息
  • 判断消息是否具备x-delay属性
  • 如果有x-delay属性,说明是延迟消息,持久化到硬盘,读取x-delay值,作为延迟时间
  • 返回routing not found结果给消息发送者
  • x-delay时间到期后,重新投递消息到指定队列

2.3.3.使用DelayExchange

插件的使用也非常简单:声明一个交换机,交换机的类型可以是任意类型,只需要设定delayed属性为true即可,然后声明队列与其绑定即可。

1)声明DelayExchange交换机

基于注解方式(推荐):

java 复制代码
@RabbitListener(bindings = @QueueBinding(
        value = @Queue(name = "delay.queue", durable = "true"),
        exchange = @Exchange(name = "delay.direct",delayed = "true"),
        key = "delay"
))
public void listenDelayedQueue(String msg){
    log.info("接收到 delay.queue的延迟消息:{}", msg);
}

也可以基于@Bean的方式:

2)发送消息

发送消息时,一定要携带x-delay属性,指定延迟的时间:

java 复制代码
@Test
public void testDelayedMsg() {
    // 创建消息
    Message message = MessageBuilder
            .withBody("hello, delay message".getBytes(StandardCharsets.UTF_8))
            .setHeader("x-delay",10000)
            .build();
    // 消息ID,需要封装到CorrelationData中
    CorrelationData correlationData = new CorrelationData(UUID.randomUUID().toString());
    // 发送消息
    rabbitTemplate.convertAndSend("delay.direct", "delay", message, correlationData);
    log.debug("发送消息成功");
}

2.3.4.总结

延迟队列插件的使用步骤包括哪些?

•声明一个交换机,添加delayed属性为true

•发送消息时,添加x-delay头,值为超时时间

3.惰性队列

3.1.消息堆积问题

当生产者发送消息的速度超过了消费者处理消息的速度,就会导致队列中的消息堆积,直到队列存储消息达到上限。之后发送的消息就会成为死信,可能会被丢弃,这就是消息堆积问题。

https://blog.csdn.net/cuibin1991/article/details/107930479

解决消息堆积有两种思路:

  • 增加更多消费者,提高消费速度。也就是我们之前说的work queue模式
  • 扩大队列容积,提高堆积上限

要提升队列容积,把消息保存在内存中显然是不行的。

3.2.惰性队列

从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的概念,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存
  • 支持数百万条的消息存储

3.2.1.基于命令行设置lazy-queue

而要设置一个队列为惰性队列,只需要在声明队列时,指定x-queue-mode属性为lazy即可。可以通过命令行将一个运行中的队列修改为惰性队列:

sh 复制代码
rabbitmqctl set_policy Lazy "^lazy-queue$" '{"queue-mode":"lazy"}' --apply-to queues  

命令解读:

  • rabbitmqctl :RabbitMQ的命令行工具
  • set_policy :添加一个策略
  • Lazy :策略名称,可以自定义
  • "^lazy-queue$" :用正则表达式匹配队列的名字
  • '{"queue-mode":"lazy"}' :设置队列模式为lazy模式
  • --apply-to queues :策略的作用对象,是所有的队列

3.2.2.基于@Bean声明lazy-queue

3.2.3.基于@RabbitListener声明LazyQueue

测试 :

声明一个惰性队列 一个普通队列

java 复制代码
// 惰性队列
@Bean
public Queue lazyQueue(){
    return QueueBuilder.durable("lazy.queue")
            .lazy()
            .build();
}
// 普通队列
@Bean
public Queue normalQueue(){
    return QueueBuilder.durable("normal.queue")
            .build();
}

测试发送20万条消息,到普通队列 及 惰性队列

java 复制代码
@Test
public void testSendManyMsg(){

    long startTime = System.currentTimeMillis();
    for (int i = 0; i < 200000; i++) {
        CorrelationData data = new CorrelationData(UUID.randomUUID().toString());
        rabbitTemplate.convertAndSend( "","lazy.queue", "message "+i,data);
    }
    long endTime = System.currentTimeMillis();
    System.out.println("批量发送消息 消耗时间: " + (endTime - startTime));
}

3.3.总结

消息堆积问题的解决方案?

  • 队列上绑定多个消费者,提高消费速度
  • 使用惰性队列,可以再mq中保存更多消息

惰性队列的优点有哪些?

  • 基于磁盘存储,消息上限高
  • 没有间歇性的page-out,性能比较稳定

惰性队列的缺点有哪些?

  • 基于磁盘存储,消息时效性会降低
  • 性能受限于磁盘的IO

4.MQ集群

4.1.集群分类

RabbitMQ的是基于Erlang语言编写,而Erlang又是一个面向并发的语言,天然支持集群模式。RabbitMQ的集群有两种模式:

普通集群:是一种分布式集群,将队列分散到集群的各个节点,从而提高整个集群的并发能力。

镜像集群:是一种主从集群,普通集群的基础上,添加了主从备份功能,提高集群的数据可用性。

镜像集群虽然支持主从,但主从同步并不是强一致的,某些情况下可能有数据丢失的风险。因此在RabbitMQ的3.8版本以后,推出了新的功能:仲裁队列来代替镜像集群,底层采用Raft协议确保主从的数据一致性。

4.2.普通集群

4.2.1.集群结构和特征

普通集群,或者叫标准集群(classic cluster),具备下列特征:

  • 会在集群的各个节点间共享部分数据,包括:交换机、队列元信息。不包含队列中的消息。
  • 当访问集群某节点时,如果队列不在该节点,会从数据所在节点传递到当前节点并返回
  • 队列所在节点宕机,队列中的消息就会丢失

结构如图:

4.2.2.部署

参考课前资料:《RabbitMQ部署指南.md

4.3.镜像集群

4.3.1.集群结构和特征

镜像集群:本质是主从模式,具备下面的特征:

  • 交换机、队列、队列中的消息会在各个mq的镜像节点之间同步备份。
  • 创建队列的节点被称为该队列的主节点,备份到的其它节点叫做该队列的镜像节点。
  • 一个队列的主节点可能是另一个队列的镜像节点
  • 所有操作都是主节点完成,然后同步给镜像节点
  • 主宕机后,镜像节点会替代成新的主

结构如图:

4.3.2.部署

参考课前资料:《RabbitMQ部署指南.md

4.4.仲裁队列

4.4.1.集群特征

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

4.4.2.部署

参考课前资料:《RabbitMQ部署指南.md

4.4.3.Java代码创建仲裁队列

java 复制代码
@Bean
public Queue quorumQueue() {
    return QueueBuilder
        .durable("quorum.queue") // 持久化
        .quorum() // 仲裁队列
        .build();
}

4.4.4.SpringAMQP连接MQ集群

注意,这里用address来代替host、port方式

java 复制代码
spring:
  rabbitmq:
    addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073
    username: itcast
    password: 123321
    virtual-host: /
mq : 作用  使用场景

常见消息队列:  rabbitmq

rabbitmq 实现AMQP协议:  

rabbitmq 支持消息模式:   简单模式    work工作队列     广播    路由    主题模式

                             ""               fanout    direct    topic
mq 项目中的实际使用场景   
	
mq 如何保证mq可靠性 / 100%消费成功 / 消息不丢失

mq 消息重试机制

mq 延迟队列

mq 中如果消息堆积问题

mq 如何保证高可用 
    普通集群
    镜像集群
    仲裁队列

mq 消费者如何保证消费的幂等性
		判断 文章状态是否4 或 8 
		判断 文章自动审核  1
		
		基于redis   消息生成全局ID  

图:

[外链图片转存中...(img-nKX9KURb-1706781128601)]

4.3.2.部署

参考课前资料:《RabbitMQ部署指南.md

4.4.仲裁队列

4.4.1.集群特征

仲裁队列:仲裁队列是3.8版本以后才有的新功能,用来替代镜像队列,具备下列特征:

  • 与镜像队列一样,都是主从模式,支持主从数据同步
  • 使用非常简单,没有复杂的配置
  • 主从同步基于Raft协议,强一致

4.4.2.部署

参考课前资料:《RabbitMQ部署指南.md

4.4.3.Java代码创建仲裁队列

java 复制代码
@Bean
public Queue quorumQueue() {
    return QueueBuilder
        .durable("quorum.queue") // 持久化
        .quorum() // 仲裁队列
        .build();
}

4.4.4.SpringAMQP连接MQ集群

注意,这里用address来代替host、port方式

java 复制代码
spring:
  rabbitmq:
    addresses: 192.168.150.105:8071, 192.168.150.105:8072, 192.168.150.105:8073
    username: itcast
    password: 123321
    virtual-host: /
mq : 作用  使用场景

常见消息队列:  rabbitmq

rabbitmq 实现AMQP协议:  

rabbitmq 支持消息模式:   简单模式    work工作队列     广播    路由    主题模式

                             ""               fanout    direct    topic
mq 项目中的实际使用场景   
	
mq 如何保证mq可靠性 / 100%消费成功 / 消息不丢失

mq 消息重试机制

mq 延迟队列

mq 中如果消息堆积问题

mq 如何保证高可用 
    普通集群
    镜像集群
    仲裁队列

mq 消费者如何保证消费的幂等性
		判断 文章状态是否4 或 8 
		判断 文章自动审核  1
		
		基于redis   消息生成全局ID  
相关推荐
yx9o1 小时前
Kafka 源码 KRaft 模式本地运行
分布式·kafka
Gemini19951 小时前
分布式和微服务的区别
分布式·微服务·架构
G丶AEOM1 小时前
分布式——BASE理论
java·分布式·八股
P.H. Infinity7 小时前
【RabbitMQ】03-交换机
分布式·rabbitmq
龙哥·三年风水9 小时前
群控系统服务端开发模式-应用开发-个人资料
分布式·php·群控系统
funnyZpC11 小时前
quartz集群增强版🎉
java·分布式·开源·集群·定时任务
明达技术12 小时前
工业4.0时代下的分布式IO模块
分布式
天冬忘忧14 小时前
Spark 程序开发与提交:本地与集群模式全解析
大数据·分布式·spark
一叶飘零_sweeeet15 小时前
Dubbo 构建高效分布式服务架构
分布式·架构·dubbo
孤蓬&听雨15 小时前
RabbitMQ自动发送消息工具(自动化测试RabbitMQ)
分布式·测试工具·自动化·rabbitmq·自动发送消息