SPI指数计算(Standardized Precipitation Index,标准化降水指数) 附完整MATLAB代码

SPI指数(Standardized Precipitation Index,标准化降水指数)是反映干湿状况的一个指标,主要计算步骤如下:

收集研究区域过去30年或以上时间尺度(一般选取30年)的月降水量资料。

对月降水量资料进行统计分析,拟合出最适合的概率分布函数。常用的有Pearson III 分布、Gamma分布等。

根据所选取的概率分布函数,估计出各个时间尺度下的平均值和标准差。

对于任意一个时间尺度,用其降水量减去该时间尺度下的平均值,再除以标准差,即可计算出该时间的SPI值。

根据SPI的值确定干湿状况。一般来说,SPI>0表示湿润,SPI<0表示干旱。干旱和湿润的强度根据SPI绝对值的大小判断。

绘制不同时间尺度下的SPI变化曲线,分析各个时间尺度的干湿状况。

综上,SPI指数借助长期历史资料,能很好地反映不同时间尺度下的干湿状况,是评估干旱的重要指标之一。

MATLAB代码:

%% SPI指数计算

clc;close all;clear all;%清除空间

%% 载入数据

data=xlsread('降水.xls');

x=data(:,3);

y=data(:,1);

% x=data(:,2);

% y=data(:,1);

%% 计算伽马分布的参数

% %生成降雨数据

% N=1000;%天数

% x=randi([0,100],N,1);%降雨量

n=length(x);

H1= x==0;

m=sum(H1);%0的项数

% A=sum(log(x(x~=0)))/m-log(mean(x));

% A=log(mean(x))-sum(log(x(x~=0)))/m;

x2=x(x~=0);

% [alpha,beta] = gamma_fit(x2);

p,ci\] = gamfit(x2); alpha=p(1) beta=p(2) % alpha=(1+sqrt(1+4\*A/3))/(4\*A); % beta=mean(x)/alpha; q=m/n; %% 参数设定 c0=2.515517; c1=0.802853; c2=0.010328; d1=1.432788; d2=0.189269; d3=0.001308; % 计算SPI指数 SPI=SPIfun(q,alpha,beta,c0,c1,c2,d1,d2,d3,x); figure; plot(y,SPI,'b-'); hold on; plot(y,zeros(length(y),1),'r-'); xlabel('时间'); ylabel('SPI'); title('降雨量SPI'); function \[a,b\] = gamma_fit(x,s) % GAMMA_FIT Maximum-likelihood gamma distribution. % % GAMMA_FIT(x) returns the MLE (a,b) for the data in vector x. % % GAMMA_FIT(m,s) returns the MLE (a,b) for data with sufficient statistics % given by % m = mean(x) % s = log(m) - mean(log(x)) % % The gamma distribution is parameterized as % p(x) = x\^(a-1)/(Gamma(a) b\^a) exp(-x/b) % E\[x\] = ab % % The algorithm is a generalized Newton iteration, described in % "Estimating a Gamma distribution" by T. Minka. % Written by Tom Minka if nargin == 1 m = mean(x); s = log(m) - mean(log(x)); else % suff stats given m = x; end a = 0.5/s; if 0 % lower bound for iter = 1:1000 old_a = a; a = inv_digamma(log(a) - s); if(abs(a - old_a) \< 1e-8) break; end end end % gen Newton for iter = 1:100 old_a = a; g = log(a)-s-digamma(a); h = 1/a - trigamma(a); a = 1/(1/a + g/(a\^2\*h)); if(abs(a - old_a) \< 1e-8) break; end end b = m/a; function H=Hfun(q,alpha,beta,x) %% 计算累积概率 % gamcdf(x,a,b) G=gamcdf(x,alpha,beta); H=q+(1-q)\*G; function SPI=SPIfun(q,alpha,beta,c0,c1,c2,d1,d2,d3,x) %% 计算SPI H=Hfun(q,alpha,beta,x); SPI=zeros(1,length(H)); for i=1:length(H) if H(i)\<=0.5 k=sqrt(log(1/(H(i).\^2))); SPI(i)=-(k-(c0+c1\*k+c2\*k\^2)/(1+d1\*k+d2\*k\^2+d3\*k\^3)); else k=sqrt(log(1/(1-H(i))\^2)); SPI(i)=k-(c0+c1\*k+c2\*k\^2)/(1+d1\*k+d2\*k\^2+d3\*k\^3); end end function k=kfun(q,alpha,beta,c0,c1,c2,d1,d2,d3,x) %% 计算k H=Hfun(q,alpha,beta,x); for i=1:length(H) if H(i)\<=0.5 else end end 程序结果: ![](https://file.jishuzhan.net/article/1753903241738850305/528c71197fdc2b151215ac40efe3224a.webp) alpha = 0.6792 beta = 10.4584 \>\>

相关推荐
小麦矩阵系统永久免费14 分钟前
短视频矩阵系统哪个好用?2025最新评测与推荐|小麦矩阵系统
大数据·人工智能·矩阵
Mr.Lee jack16 分钟前
【vLLM】源码解读:高性能大语言模型推理引擎的工程设计与实现
人工智能·语言模型·自然语言处理
杨小码不BUG21 分钟前
蛇形舞动:矩阵填充的艺术与算法(洛谷P5731)
c++·算法·矩阵·csp-j/s·循环控制
IT_陈寒24 分钟前
Java性能优化:这5个Spring Boot隐藏技巧让你的应用提速40%
前端·人工智能·后端
MicroTech202532 分钟前
微算法科技(NASDAQ:MLGO)开发延迟和隐私感知卷积神经网络分布式推理,助力可靠人工智能系统技术
人工智能·科技·算法
喜欢吃豆38 分钟前
多轮智能对话系统架构方案(可实战):从基础模型到自我优化的对话智能体,数据飞轮的重要性
人工智能·语言模型·自然语言处理·系统架构·大模型·多轮智能对话系统
文火冰糖的硅基工坊1 小时前
[嵌入式系统-83]:算力芯片的类型与主流架构
人工智能·重构·架构
Boop_wu2 小时前
[数据结构] Map和Set
java·数据结构·算法
视觉语言导航3 小时前
ICRA-2025 | 阿德莱德机器人拓扑导航探索!TANGO:具有局部度量控制的拓扑目标可穿越性感知具身导航
人工智能·机器人·具身智能
思考的笛卡尔3 小时前
密码学基础:RSA与AES算法的实现与对比
网络·算法·密码学