Spark部署模式

目录

部署模式概述

[1. Local Mode](#1. Local Mode)

[2. Standalone Mode](#2. Standalone Mode)

[3. YARN Mode](#3. YARN Mode)

[4. Mesos Mode](#4. Mesos Mode)

[5. Kubernetes Mode](#5. Kubernetes Mode)

部署模式选择


部署模式概述

Apache Spark支持多种部署模式,这些模式决定了如何在集群上启动和运行你的Spark应用程序。以下是Spark支持的主要部署模式:

1. Local Mode

  • 描述: 在单个机器上运行Spark。这种模式通常用于开发和测试。
  • Master URL : locallocal[*]local[N],其中*表示使用所有可用的核心,N表示使用特定数量的核心。

2. Standalone Mode

  • 描述: 在Spark自带的简易集群管理器上运行。适合于简单的集群部署。
  • Master URL : spark://HOST:PORT,其中HOST是集群Master节点的主机名,PORT是运行Master服务的端口,默认为7077

3. YARN Mode

  • 描述 : 在Hadoop YARN上运行,YARN负责资源分配调度
  • Master URL : yarn
  • 部署模式 : client(客户端模式)和cluster(集群模式)。
    • client模式下,Driver运行在提交应用程序的机器上。
    • cluster模式下,Driver运行在集群中的一个节点上。

4. Mesos Mode

  • 描述: 在Apache Mesos集群上运行。
  • Master URL : mesos://HOST:PORTzk://ZOOKEEPER_URL(使用ZooKeeper时)。
  • 部署模式 : clientcluster

5. Kubernetes Mode

  • 描述: 在Kubernetes集群上运行,使用Kubernetes作为资源管理器。
  • Master URL : k8s://https://HOST:PORT
  • 部署模式 : clientcluster

部署模式选择

选择部署模式时,需考虑以下因素:

  • 资源管理器: 你的集群使用的资源管理器(如YARN, Mesos, Kubernetes)。
  • 集群大小和复杂性: 对于小型和简单的集群,可能更适合使用Standalone模式。对于大型和复杂的集群,则可能需要YARN或Kubernetes。
  • 与现有系统的集成: 如果已经在使用Hadoop生态系统,YARN模式可能是一个自然的选择。如果使用容器化部署,Kubernetes可能更合适。
  • 应用程序的需求: 某些模式可能提供特定的功能或优化,这些可能更适合你的应用程序需求。

根据你的具体需求和环境,选择最适合你的Spark应用程序的部署模式。

相关推荐
珠海西格27 分钟前
“主动预防” vs “事后补救”:分布式光伏防逆流技术的代际革命,西格电力给出标准答案
大数据·运维·服务器·分布式·云计算·能源
创客匠人老蒋1 小时前
从数据库到智能体:教育企业如何构建自己的“数字大脑”?
大数据·人工智能·创客匠人
2501_948120151 小时前
基于大数据的泄漏仪设备监控系统
大数据
Spey_Events2 小时前
星箭聚力启盛会,2026第二届商业航天产业发展大会暨商业航天展即将开幕!
大数据·人工智能
AC赳赳老秦3 小时前
专利附图说明:DeepSeek生成的专业技术描述与权利要求书细化
大数据·人工智能·kafka·区块链·数据库开发·数据库架构·deepseek
GeeLark3 小时前
#请输入你的标签内容
大数据·人工智能·自动化
小邓吖3 小时前
自己做了一个工具网站
前端·分布式·后端·中间件·架构·golang
智能相对论4 小时前
2万台?九识无人车车队规模靠谱吗?
大数据
小小王app小程序开发5 小时前
淘宝扭蛋机小程序核心玩法拆解与技术运营分析
大数据·小程序
得物技术5 小时前
从“人治”到“机治”:得物离线数仓发布流水线质量门禁实践
大数据·数据仓库