Spark部署模式

目录

部署模式概述

[1. Local Mode](#1. Local Mode)

[2. Standalone Mode](#2. Standalone Mode)

[3. YARN Mode](#3. YARN Mode)

[4. Mesos Mode](#4. Mesos Mode)

[5. Kubernetes Mode](#5. Kubernetes Mode)

部署模式选择


部署模式概述

Apache Spark支持多种部署模式,这些模式决定了如何在集群上启动和运行你的Spark应用程序。以下是Spark支持的主要部署模式:

1. Local Mode

  • 描述: 在单个机器上运行Spark。这种模式通常用于开发和测试。
  • Master URL : locallocal[*]local[N],其中*表示使用所有可用的核心,N表示使用特定数量的核心。

2. Standalone Mode

  • 描述: 在Spark自带的简易集群管理器上运行。适合于简单的集群部署。
  • Master URL : spark://HOST:PORT,其中HOST是集群Master节点的主机名,PORT是运行Master服务的端口,默认为7077

3. YARN Mode

  • 描述 : 在Hadoop YARN上运行,YARN负责资源分配调度
  • Master URL : yarn
  • 部署模式 : client(客户端模式)和cluster(集群模式)。
    • client模式下,Driver运行在提交应用程序的机器上。
    • cluster模式下,Driver运行在集群中的一个节点上。

4. Mesos Mode

  • 描述: 在Apache Mesos集群上运行。
  • Master URL : mesos://HOST:PORTzk://ZOOKEEPER_URL(使用ZooKeeper时)。
  • 部署模式 : clientcluster

5. Kubernetes Mode

  • 描述: 在Kubernetes集群上运行,使用Kubernetes作为资源管理器。
  • Master URL : k8s://https://HOST:PORT
  • 部署模式 : clientcluster

部署模式选择

选择部署模式时,需考虑以下因素:

  • 资源管理器: 你的集群使用的资源管理器(如YARN, Mesos, Kubernetes)。
  • 集群大小和复杂性: 对于小型和简单的集群,可能更适合使用Standalone模式。对于大型和复杂的集群,则可能需要YARN或Kubernetes。
  • 与现有系统的集成: 如果已经在使用Hadoop生态系统,YARN模式可能是一个自然的选择。如果使用容器化部署,Kubernetes可能更合适。
  • 应用程序的需求: 某些模式可能提供特定的功能或优化,这些可能更适合你的应用程序需求。

根据你的具体需求和环境,选择最适合你的Spark应用程序的部署模式。

相关推荐
努力成为一个程序猿.3 分钟前
【Flink】FlinkSQL-动态表和持续查询概念
大数据·数据库·flink
一叶飘零_sweeeet32 分钟前
幂等性 VS 分布式锁:分布式系统一致性的两大护法 —— 从原理到实战的深度剖析
分布式·分布式锁·接口幂等
更深兼春远1 小时前
Spark on Yarn安装部署
大数据·分布式·spark
DolphinScheduler社区1 小时前
真实迁移案例:从 Azkaban 到 DolphinScheduler 的选型与实践
java·大数据·开源·任务调度·azkaban·海豚调度·迁移案例
zhangkaixuan4562 小时前
Apache Paimon 写入流程
java·大数据·apache·paimon
Mxsoft6192 小时前
电力设备绝缘状态分布式光纤传感实时监测与多维度诊断技术
分布式
Java爱好狂.2 小时前
分布式ID|从源码角度深度解析美团Leaf双Buffer优化方案
java·数据库·分布式·分布式id·es·java面试·java程序员
Elastic 中国社区官方博客2 小时前
通过混合搜索重排序提升多语言嵌入模型的相关性
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
J-JunLiang3 小时前
Flink 实时开发:关键知识点
大数据·flink