Spark部署模式

目录

部署模式概述

[1. Local Mode](#1. Local Mode)

[2. Standalone Mode](#2. Standalone Mode)

[3. YARN Mode](#3. YARN Mode)

[4. Mesos Mode](#4. Mesos Mode)

[5. Kubernetes Mode](#5. Kubernetes Mode)

部署模式选择


部署模式概述

Apache Spark支持多种部署模式,这些模式决定了如何在集群上启动和运行你的Spark应用程序。以下是Spark支持的主要部署模式:

1. Local Mode

  • 描述: 在单个机器上运行Spark。这种模式通常用于开发和测试。
  • Master URL : locallocal[*]local[N],其中*表示使用所有可用的核心,N表示使用特定数量的核心。

2. Standalone Mode

  • 描述: 在Spark自带的简易集群管理器上运行。适合于简单的集群部署。
  • Master URL : spark://HOST:PORT,其中HOST是集群Master节点的主机名,PORT是运行Master服务的端口,默认为7077

3. YARN Mode

  • 描述 : 在Hadoop YARN上运行,YARN负责资源分配调度
  • Master URL : yarn
  • 部署模式 : client(客户端模式)和cluster(集群模式)。
    • client模式下,Driver运行在提交应用程序的机器上。
    • cluster模式下,Driver运行在集群中的一个节点上。

4. Mesos Mode

  • 描述: 在Apache Mesos集群上运行。
  • Master URL : mesos://HOST:PORTzk://ZOOKEEPER_URL(使用ZooKeeper时)。
  • 部署模式 : clientcluster

5. Kubernetes Mode

  • 描述: 在Kubernetes集群上运行,使用Kubernetes作为资源管理器。
  • Master URL : k8s://https://HOST:PORT
  • 部署模式 : clientcluster

部署模式选择

选择部署模式时,需考虑以下因素:

  • 资源管理器: 你的集群使用的资源管理器(如YARN, Mesos, Kubernetes)。
  • 集群大小和复杂性: 对于小型和简单的集群,可能更适合使用Standalone模式。对于大型和复杂的集群,则可能需要YARN或Kubernetes。
  • 与现有系统的集成: 如果已经在使用Hadoop生态系统,YARN模式可能是一个自然的选择。如果使用容器化部署,Kubernetes可能更合适。
  • 应用程序的需求: 某些模式可能提供特定的功能或优化,这些可能更适合你的应用程序需求。

根据你的具体需求和环境,选择最适合你的Spark应用程序的部署模式。

相关推荐
智能相对论27 分钟前
CES深度观察丨智能清洁的四大关键词:变形、出户、体验以及生态协同
大数据·人工智能
焦耳热科技前沿2 小时前
北京科技大学/理化所ACS Nano:混合价态Cu₂Sb金属间化合物实现高效尿素电合成
大数据·人工智能·自动化·能源·材料工程
min1811234563 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
武子康3 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
小北方城市网3 小时前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
数据智研3 小时前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
范桂飓5 小时前
大模型分布式训练框架 Megatron-LM
人工智能·分布式
TDengine (老段)5 小时前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
亚古数据5 小时前
亚古数据:查询斯里兰卡公司可以获取什么文件和信息?
大数据·亚古数据·斯里兰卡公司查询
WLJT1231231235 小时前
守护自然与滋养民生的绿色之路
大数据·安全