Megatron-LM源码系列(七):Distributed-Optimizer分布式优化器实现Part2

1. 使用入口

  • DistributedOptimizer类定义在megatron/optimizer/distrib_optimizer.py文件中。创建的入口是在megatron/optimizer/__init__.py文件中的get_megatron_optimizer函数中。根据传入的args.use_distributed_optimizer参数来判断是用DistributedOptimizer还是Float16OptimizerWithFloat16Params
python 复制代码
def get_megatron_optimizer(model,
                           no_weight_decay_cond=None,
                           scale_lr_cond=None,
                           lr_mult=1.0):
        ...
        # Megatron optimizer.
        opt_ty = DistributedOptimizer \
            if args.use_distributed_optimizer else \
            Float16OptimizerWithFloat16Params
        return opt_ty(optimizer,
                      args.clip_grad,
                      args.log_num_zeros_in_grad,
                      params_have_main_grad,
                      args.use_contiguous_buffers_in_local_ddp,
                      args.fp16,
                      args.bf16,
                      args.params_dtype,
                      grad_scaler,
                      model)

2. 初始化init源码说明

  • 初始化的过程很大程度对应的上图grad buffer分片的实现,对应init函数如下:
python 复制代码
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 fp16, bf16, params_dtype, grad_scaler, models):
  • init时会通过build_model_gbuf_range_map函数先创建grad buffer的范围映射,也就是对应图中的world_index/local_index/param_index三个。这里的self.models是一个list类型,对于使用了interleave流水线方式的训练来说,这里的self.models中会保存多份model, 其余情况list中只有一个元素。
python 复制代码
        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
  • build_model_gbuf_range_map会依次按grad buffer中类型来进行range的初始化build_model_gbuf_range。这里定义了一个单独的Range类。
python 复制代码
    @classmethod
    def build_model_gbuf_range_map(cls, model):
        """
        Create param-to-grad-buffer mappings, for grad buffer data types
        within a specific virtual model.
        """
        return {
            dtype : cls.build_model_gbuf_range(model, dtype)
            for dtype in model._grad_buffers
        }
        
class Range:
    """
    A range represents a start and end points for indexing a shard
    from a full tensor.
    """
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Range(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)
    def __len__(self):
        return self.end - self.start
  • build_model_gbuf_range初始化range的流程如下:
    • 获取DP的rank,计算单个Grad buffer切片的大小
    • 保存当前rank的world range和local range, 分别对应world index和local index
    • 计算param的range范围,对应param index
    • 返回当前rank的相关range范围
python 复制代码
    @classmethod
    def build_model_gbuf_range(cls, model, dtype):
        # 获取DP的rank
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # 计算单个Grad buffer切片的大小
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))

        # 跟据DDP的rank总数,分别计算每个rank对应的全局range
        gbuf_world_all_ranges = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)
            
        # 保存当前rank的world range和local range
        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()
        
        # 计算param的range范围
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)
        
        # Group into dict.
        data = {
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
        }

        return data
  • 接着会根据当前rank相关的Range内容self.model_gbuf_ranges调用build_model_param_gbuf_map函数,主要作用是创建model_gbuf_ranges的逆映射,保存param->(modex_index, type)的映射。
python 复制代码
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)
        ...
            
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        """
        Create a reverse of the model_gbuf_ranges, for referencing in
        opposite direction.
        """
        param_gbuf_map = {}
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map
  • self.build_model_param_gbuf_map之后是初始化Optimizer对应的local group range,Optimizer原本有param_groups包括多个参数组,这里build_optimizer_group_ranges为了创建param参数到group_index的map映射,也就是<model_parameter:group_index>;self.build_model_param_gbuf_map最后对每个group_range中增加新的orig_grouporig_group_idx两个key,原来group_range初始化的时候只有params一个key
python 复制代码
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        # Optimizer ranges.
        self.model_param_group_index_map, self.opt_group_ranges = \
            self.build_optimizer_group_ranges(self.optimizer.param_groups,
                                              self.model_gbuf_ranges)
        ...

    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
        # 获取param_groups中组的个数
        num_groups = len(param_groups)
        
        # 创建全局的参数到group_index的map映射,也就是<model_parameter:group_index>
        world_param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                world_param_group_map[param] = group_index

        # 创建当前rank的local_param_group_map, local_param_group_map是param与(group_index, group_params_len)的映射, local_param_group_map虽然返回了但后面没用
        local_param_group_map = {}
        group_ranges = [ {"params": []} for _ in param_groups ]
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
                    group_index = world_param_group_map[param]
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)
                    local_param_group_map[param] = \
                        (group_index, len(group_range["params"]) - 1)
        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
            group_range["orig_group_idx"] = param_groups[group_index]

        return local_param_group_map, group_ranges
  • 在初始化Optimizer之后,是通过创建self.build_model_and_main_param_groups创建optimizer step要用到的main parameter groups, 这里的group一方面是要进行reduce和gather通信操作,另一方面是被优化器用于梯度的更新操作。
python 复制代码
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        # Allocate main param shards.
        (
            self.model_float16_groups,
            self.model_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)
        ...
  • self.build_model_and_main_param_groups的实现主要是关于fp32/fp16/bf16三种类型训练时优化器内的显存分配。
python 复制代码
    @classmethod
    def build_model_and_main_param_groups(cls,
                                          model_gbuf_ranges,
                                          param_gbuf_map,
                                          opt_group_ranges):
        ...
        # 保存原本fp16类型param
        model_float16_groups = []
        # 保存原本fp32类型param
        model_fp32_groups = []
        # 保存原本fp16类型param的切片
        shard_float16_groups = []
        # 保存原本fp32类型param的切片
        shard_fp32_groups = []
        # 保存原本fp16类型param的fp32类型param的副本
        shard_fp32_from_float16_groups = []
        
        # 分配每个group的param参数切片
        for group_index, group_range in enumerate(opt_group_ranges):
            for model_param in group_range["params"]:
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:
                    # 如果是fp16/bf16类型参数,clone为fp32类型的切片.
                    shard_model_param = model_param.detach().view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param = shard_model_param.clone().float()
                    ...
                    # 添加到group中
                    model_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)
                elif model_param.type() == 'torch.cuda.FloatTensor':
                    # 如果是fp32类型参数,不进行clone,直接引用
                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
                    model_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
                    ...
            # 更新优化器的参数
            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]
        return (
            model_float16_groups,
            model_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )
  • 在Optimizer init中,接下来是初始化self.param_buffers,这里的self.param_buffers是DDP模型的grad buffer的view示图,跟grad buffer共享存储,但是用自己的数据类型;最后更新优化器的param_groups。
python 复制代码
class DistributedOptimizer(MixedPrecisionOptimizer):
    def __init__(...):
        ...
        # 初始化self.param_buffers
        self.param_buffers = []
        for model_index, model in enumerate(self.models):
            current_param_buffers = {}
            for dtype, grad_buffer in model._grad_buffers.items():
                # 获取存储,这里是兼容的写法.
                try:
                    storage = grad_buffer.data.storage()._untyped()
                except:
                    storage = grad_buffer.data.storage().untyped()
                # 基于grad_buffer的storage创建param_buffer类型,这里的params_dtype是参数类型; 这里的torch.tensor没有autograd的历史。
                param_buffer = torch.tensor(
                    storage,
                    dtype = params_dtype,
                    device = grad_buffer.data.device)
                param_buffer = param_buffer[:grad_buffer.numel_padded]
                # 这里的dtype是grad_buffer的类型
                current_param_buffers[dtype] = param_buffer
            self.param_buffers.append(current_param_buffers)
        
        # 最后更新优化器的param_groups
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_ranges ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

3. 参考

相关推荐
昨日之日20062 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_2 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover2 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
热爱跑步的恒川3 小时前
【论文复现】基于图卷积网络的轻量化推荐模型
网络·人工智能·开源·aigc·ai编程
P.H. Infinity5 小时前
【RabbitMQ】03-交换机
分布式·rabbitmq
阡之尘埃5 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
孙同学要努力7 小时前
全连接神经网络案例——手写数字识别
人工智能·深度学习·神经网络
Eric.Lee20217 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
龙哥·三年风水7 小时前
群控系统服务端开发模式-应用开发-个人资料
分布式·php·群控系统
其实吧38 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab