scikit-learn 1.3.X 版本 bug - F1 分数计算错误


如果您正在使用 scikit-learn 1.3.X 版本,在使用 f1_score()classification_report() 函数时,如果参数设置为 zero_division=1.0zero_division=np.nan,那么函数的输出结果可能会出错。错误的范围可能高达 100%,具体取决于数据集中的类别数量。这个错误可能会显著地影响到多分类问题中常用的宏平均 F1 指标,从而可能导致对分类器性能的误判,甚至可能带来一些安全风险。

scikit-learn releases 页面:https://github.com/scikit-learn/scikit-learn/releases

F1 分数的定义:查准率是指预测结果中,每个类别预测正确的比例。召回率则是指样本标签中,每个类别被正确预测的比例。两者的分母不同,查准率的分母是预测结果的样本数,召回率的分母是样本标签的样本数。F1 分数是查准率和召回率的调和平均值

问题原因:在计算 F1 分数时,如果某个类别的查准率和召回率都为 0,那么根据 zero_division 参数的设定,F1 分数可能被赋值为 1.0 或 np.nan,而非正确的 0.0。

检测这个错误的方法:如果想要确定某个 F1 分数计算是否受到这个错误的影响,可以先使用 classification_report() 函数进行 F1 分数的计算。如果存在任何一个类别的查准率和召回率都为 0,而对应的 F1 分数为 1.0 或 nan,那么这个 F1 分数的计算就是错误的。

解决办法:

  • 请升级到已发布的 scikit-learn 1.4.0 或更高版本,该版本已修复了这个 bug。
  • 另一种解决方案是降级到 scikit-learn 1.2.2 版本,或者设置 zero_division 参数为 0.0。但要注意了解这一参数变化将如何影响查准率吧、召回率和 F1 分数!

📚️ 参考链接:

相关推荐
清水白石0082 分钟前
从一个“支付状态不一致“的bug,看大型分布式系统的“隐藏杀机“
java·数据库·bug
湫ccc6 小时前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe7 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin7 小时前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python
哭泣的眼泪4087 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
湫ccc8 小时前
《Python基础》之基本数据类型
开发语言·python
drebander9 小时前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
威威猫的栗子9 小时前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
墨染风华不染尘10 小时前
python之开发笔记
开发语言·笔记·python
Dxy123931021610 小时前
python bmp图片转jpg
python