scikit-learn 1.3.X 版本 bug - F1 分数计算错误


如果您正在使用 scikit-learn 1.3.X 版本,在使用 f1_score()classification_report() 函数时,如果参数设置为 zero_division=1.0zero_division=np.nan,那么函数的输出结果可能会出错。错误的范围可能高达 100%,具体取决于数据集中的类别数量。这个错误可能会显著地影响到多分类问题中常用的宏平均 F1 指标,从而可能导致对分类器性能的误判,甚至可能带来一些安全风险。

scikit-learn releases 页面:https://github.com/scikit-learn/scikit-learn/releases

F1 分数的定义:查准率是指预测结果中,每个类别预测正确的比例。召回率则是指样本标签中,每个类别被正确预测的比例。两者的分母不同,查准率的分母是预测结果的样本数,召回率的分母是样本标签的样本数。F1 分数是查准率和召回率的调和平均值

问题原因:在计算 F1 分数时,如果某个类别的查准率和召回率都为 0,那么根据 zero_division 参数的设定,F1 分数可能被赋值为 1.0 或 np.nan,而非正确的 0.0。

检测这个错误的方法:如果想要确定某个 F1 分数计算是否受到这个错误的影响,可以先使用 classification_report() 函数进行 F1 分数的计算。如果存在任何一个类别的查准率和召回率都为 0,而对应的 F1 分数为 1.0 或 nan,那么这个 F1 分数的计算就是错误的。

解决办法:

  • 请升级到已发布的 scikit-learn 1.4.0 或更高版本,该版本已修复了这个 bug。
  • 另一种解决方案是降级到 scikit-learn 1.2.2 版本,或者设置 zero_division 参数为 0.0。但要注意了解这一参数变化将如何影响查准率吧、召回率和 F1 分数!

📚️ 参考链接:

相关推荐
你知道网上冲浪吗1 小时前
【原创理论】Stochastic Coupled Dyadic System (SCDS):一个用于两性关系动力学建模的随机耦合系统框架
python·算法·数学建模·数值分析
钢铁男儿1 小时前
Python 正则表达式核心元字符全解析
python
杨荧2 小时前
基于Python的宠物服务管理系统 Python+Django+Vue.js
大数据·前端·vue.js·爬虫·python·信息可视化
CodeCraft Studio2 小时前
在 Python 中操作 Excel 文件的高效方案 —— Aspose.Cells for Python
python·ui·excel·报表·aspose·aspose.cells
l1t2 小时前
利用DeepSeek辅助WPS电子表格ET格式分析
人工智能·python·wps·插件·duckdb
WSSWWWSSW3 小时前
Matplotlib数据可视化实战:Matplotlib子图布局与管理入门
python·信息可视化·matplotlib
WSSWWWSSW3 小时前
Matplotlib数据可视化实战:Matplotlib图表美化与进阶教程
python·信息可视化·matplotlib
mftang3 小时前
Python可视化工具-Bokeh:动态显示数据
开发语言·python
Seeklike3 小时前
diffuxers学习--AutoPipeline
人工智能·python·stable diffusion·diffusers
前端小趴菜053 小时前
python - 数据类型
python