scikit-learn 1.3.X 版本 bug - F1 分数计算错误


如果您正在使用 scikit-learn 1.3.X 版本,在使用 f1_score()classification_report() 函数时,如果参数设置为 zero_division=1.0zero_division=np.nan,那么函数的输出结果可能会出错。错误的范围可能高达 100%,具体取决于数据集中的类别数量。这个错误可能会显著地影响到多分类问题中常用的宏平均 F1 指标,从而可能导致对分类器性能的误判,甚至可能带来一些安全风险。

scikit-learn releases 页面:https://github.com/scikit-learn/scikit-learn/releases

F1 分数的定义:查准率是指预测结果中,每个类别预测正确的比例。召回率则是指样本标签中,每个类别被正确预测的比例。两者的分母不同,查准率的分母是预测结果的样本数,召回率的分母是样本标签的样本数。F1 分数是查准率和召回率的调和平均值

问题原因:在计算 F1 分数时,如果某个类别的查准率和召回率都为 0,那么根据 zero_division 参数的设定,F1 分数可能被赋值为 1.0 或 np.nan,而非正确的 0.0。

检测这个错误的方法:如果想要确定某个 F1 分数计算是否受到这个错误的影响,可以先使用 classification_report() 函数进行 F1 分数的计算。如果存在任何一个类别的查准率和召回率都为 0,而对应的 F1 分数为 1.0 或 nan,那么这个 F1 分数的计算就是错误的。

解决办法:

  • 请升级到已发布的 scikit-learn 1.4.0 或更高版本,该版本已修复了这个 bug。
  • 另一种解决方案是降级到 scikit-learn 1.2.2 版本,或者设置 zero_division 参数为 0.0。但要注意了解这一参数变化将如何影响查准率吧、召回率和 F1 分数!

📚️ 参考链接:

相关推荐
秃了也弱了。2 小时前
python实现定时任务:schedule库、APScheduler库
开发语言·python
Dfreedom.2 小时前
从 model(x) 到__call__:解密深度学习框架的设计基石
人工智能·pytorch·python·深度学习·call
weixin_425023002 小时前
Spring Boot 配置文件优先级详解
spring boot·后端·python
小徐Chao努力3 小时前
【Langchain4j-Java AI开发】06-工具与函数调用
java·人工智能·python
无心水3 小时前
【神经风格迁移:全链路压测】33、全链路监控与性能优化最佳实践:Java+Python+AI系统稳定性保障的终极武器
java·python·性能优化
luoluoal4 小时前
基于python的小区监控图像拼接系统(源码+文档)
python·mysql·django·毕业设计·源码
BoBoZz194 小时前
MotionBlur 演示简单运动模糊
python·vtk·图形渲染·图形处理
十八度的天空5 小时前
第01节 Python的基础语法
开发语言·python
BoBoZz195 小时前
GradientBackground 比较不同类型的背景渐变着色模式与坐标转换
python·vtk·图形渲染·图形处理
540_5405 小时前
ADVANCE Day32
人工智能·python·机器学习