scikit-learn 1.3.X 版本 bug - F1 分数计算错误


如果您正在使用 scikit-learn 1.3.X 版本,在使用 f1_score()classification_report() 函数时,如果参数设置为 zero_division=1.0zero_division=np.nan,那么函数的输出结果可能会出错。错误的范围可能高达 100%,具体取决于数据集中的类别数量。这个错误可能会显著地影响到多分类问题中常用的宏平均 F1 指标,从而可能导致对分类器性能的误判,甚至可能带来一些安全风险。

scikit-learn releases 页面:https://github.com/scikit-learn/scikit-learn/releases

F1 分数的定义:查准率是指预测结果中,每个类别预测正确的比例。召回率则是指样本标签中,每个类别被正确预测的比例。两者的分母不同,查准率的分母是预测结果的样本数,召回率的分母是样本标签的样本数。F1 分数是查准率和召回率的调和平均值

问题原因:在计算 F1 分数时,如果某个类别的查准率和召回率都为 0,那么根据 zero_division 参数的设定,F1 分数可能被赋值为 1.0 或 np.nan,而非正确的 0.0。

检测这个错误的方法:如果想要确定某个 F1 分数计算是否受到这个错误的影响,可以先使用 classification_report() 函数进行 F1 分数的计算。如果存在任何一个类别的查准率和召回率都为 0,而对应的 F1 分数为 1.0 或 nan,那么这个 F1 分数的计算就是错误的。

解决办法:

  • 请升级到已发布的 scikit-learn 1.4.0 或更高版本,该版本已修复了这个 bug。
  • 另一种解决方案是降级到 scikit-learn 1.2.2 版本,或者设置 zero_division 参数为 0.0。但要注意了解这一参数变化将如何影响查准率吧、召回率和 F1 分数!

📚️ 参考链接:

相关推荐
无人等人31 分钟前
CyberRT(apollo) IPC(shm)通信包重复/丢包 bug 及解决方案
c++·bug
Urf_read33 分钟前
改BUG:Mock测试的时候,when失效
bug
賢84333 分钟前
如何保证bug在改完之后不会引起新bug
bug
奔跑吧邓邓子42 分钟前
【Python爬虫(27)】探索数据可视化的魔法世界
开发语言·爬虫·python·数据可视化
恋恋西风1 小时前
CT dicom 去除床板 去除床位,检查床去除
python·vtk·dicom·去床板
Doker 多克2 小时前
Python Django系列—入门实例
python·django
geovindu2 小时前
python: SQLAlchemy (ORM) Simple example using mysql in Ubuntu 24.04
python·mysql·ubuntu
nuclear20112 小时前
Python 将PPT幻灯片和形状转换为多种图片格式(JPG, PNG, BMP, SVG, TIFF)
python·ppt转图片·ppt转png·ppt转jpg·ppt转svg·ppt转tiff·ppt转bmp
没有晚不了安2 小时前
1.13作业
开发语言·python