scikit-learn 1.3.X 版本 bug - F1 分数计算错误


如果您正在使用 scikit-learn 1.3.X 版本,在使用 f1_score()classification_report() 函数时,如果参数设置为 zero_division=1.0zero_division=np.nan,那么函数的输出结果可能会出错。错误的范围可能高达 100%,具体取决于数据集中的类别数量。这个错误可能会显著地影响到多分类问题中常用的宏平均 F1 指标,从而可能导致对分类器性能的误判,甚至可能带来一些安全风险。

scikit-learn releases 页面:https://github.com/scikit-learn/scikit-learn/releases

F1 分数的定义:查准率是指预测结果中,每个类别预测正确的比例。召回率则是指样本标签中,每个类别被正确预测的比例。两者的分母不同,查准率的分母是预测结果的样本数,召回率的分母是样本标签的样本数。F1 分数是查准率和召回率的调和平均值

问题原因:在计算 F1 分数时,如果某个类别的查准率和召回率都为 0,那么根据 zero_division 参数的设定,F1 分数可能被赋值为 1.0 或 np.nan,而非正确的 0.0。

检测这个错误的方法:如果想要确定某个 F1 分数计算是否受到这个错误的影响,可以先使用 classification_report() 函数进行 F1 分数的计算。如果存在任何一个类别的查准率和召回率都为 0,而对应的 F1 分数为 1.0 或 nan,那么这个 F1 分数的计算就是错误的。

解决办法:

  • 请升级到已发布的 scikit-learn 1.4.0 或更高版本,该版本已修复了这个 bug。
  • 另一种解决方案是降级到 scikit-learn 1.2.2 版本,或者设置 zero_division 参数为 0.0。但要注意了解这一参数变化将如何影响查准率吧、召回率和 F1 分数!

📚️ 参考链接:

相关推荐
一人の梅雨7 小时前
淘宝关键字搜索接口深度解析:从动态策略适配到商业数据重构
python·重构
道19937 小时前
PyTorch 从小白到高级进阶教程[工业级示例](三)
人工智能·pytorch·python
测试人社区-千羽7 小时前
智能测试的终极形态:从自动化到自主化的范式变革
运维·人工智能·python·opencv·测试工具·自动化·开源软件
锐学AI7 小时前
从零开始学MCP(八)- 构建一个MCP server
人工智能·python
木棉知行者7 小时前
PyTorch 核心方法:state_dict ()、parameters () 参数打印与应用
人工智能·pytorch·python
xingzhemengyou17 小时前
python time的使用
python
码界奇点7 小时前
基于Python与GitHub Actions的正方教务成绩自动推送系统设计与实现
开发语言·python·车载系统·自动化·毕业设计·github·源代码管理
E_ICEBLUE8 小时前
PDF vs PDF/A:区别、场景与常用转换方法(2025 全面解读)
python·pdf
岁月宁静9 小时前
🐍 Python 核心知识点:从零开始快速构建 Python 知识体系
python
C嘎嘎嵌入式开发9 小时前
deepseek-r1大模型的本地部署
人工智能·python·神经网络·机器学习