复旦大学NLP团队发布86页大模型Agent综述

复旦大学自然语言处理团队(FudanNLP)发布了一篇长达86页的综述论文,探讨了基于大型语言模型的智能代理的现状和未来。该论文从AI Agent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括LLM-based Agent的背景、构成、应用场景以及备受关注的代理社会。论文还讨论了智能代理与大语言模型的研究如何互相促进、共同发展,以及LLM-based Agents可能带来的挑战与隐忧。该论文对智能代理的发展、应用和未来方向进行了全面深入的探讨。

论文链接:https://arxiv.org/pdf/2309.07864.pdf

论文总结了大语言模型(Large Language Model,LLM)代理的崛起和潜力。该调查系统地介绍了LLM代理的概念框架,包括大脑、感知和行动三个主要组件。研究涵盖了LLM代理在单一代理、多代理、人机合作等方面的广泛应用,还探讨了LLM代理社会的行为、个性、环境以及领域内的关键问题。论文列举了一系列必读论文,涉及自然语言交互、知识、记忆、推理和规划、感知、行动等方面。这份调查对于理解LLM代理的发展和应用提供了有价值的综述。

LLM-based Agent 论文列表:https://github.com/WooooDyy/LLM-Agent-Paper-List

完整介绍:https://github.com/WooooDyy/LLM-Agent-Paper-List

参考:https://zhuanlan.zhihu.com/p/657937696

相关推荐
高洁014 分钟前
面向强化学习的状态空间建模:RSSM的介绍和PyTorch实现(3)
人工智能·python·深度学习·神经网络·transformer
apocalypsx1 小时前
深度学习-深度卷积神经网络AlexNet
人工智能·深度学习·cnn
leafff1231 小时前
一文了解LLM应用架构:从Prompt到Multi-Agent
人工智能·架构·prompt
无风听海2 小时前
神经网络之特征值与特征向量
人工智能·深度学习·神经网络
艾莉丝努力练剑2 小时前
【C++:红黑树】深入理解红黑树的平衡之道:从原理、变色、旋转到完整实现代码
大数据·开发语言·c++·人工智能·红黑树
九章云极AladdinEdu2 小时前
论文分享 | BARD-GS:基于高斯泼溅的模糊感知动态场景重建
人工智能·新视角合成·动态场景重建·运动模糊处理·3d高斯泼溅·模糊感知建模·真实世界数据集
希露菲叶特格雷拉特2 小时前
PyTorch深度学习笔记(二十)(模型验证测试)
人工智能·pytorch·笔记
NewsMash2 小时前
PyTorch之父发离职长文,告别Meta
人工智能·pytorch·python
IT_陈寒2 小时前
Python 3.12新特性实测:10个让你的代码提速30%的隐藏技巧 🚀
前端·人工智能·后端
Ztop2 小时前
GPT-5.1 已确认!OpenAI下一步推理升级?对决 Gemini 3 在即
人工智能·gpt·chatgpt