大模型|基础_word2vec

文章目录

Word2Vec

将词转化为向量后,会发现king和queen的差别与man和woman的差别是类似的,而在几何空间上,这样的差别将会以平行的关系进行表达。

会使用滑动窗口的机制。

滑动窗口内会有一个target目标词(上图蓝色部分),滑动窗口其他部分就是context word上下文,可见,这个上下文大小受限于滑动窗口的大小。

词袋模型CBOW Continuous Bag-of-Words

通过上下文context预测目标词target。

比如通过Never和late去预测出too来,先通过one-hot编码来对Never和late进行编码,并且借编码结果分别找到对应的词向量,然后将never和late的词向量去取平均,在和词库里面的每个词的词向量去做点积(点积能够反映向量的相似性)处理,然后将各个点积的结果,然后用softmax将其转化成概率,概率最大者,即为推理出来的结果。

(不是很懂,为什么还要对已知的词进行预测,可能是为了训练模型,来提高下一次,窗口框住相同的词,能够迸出target)

Continuous Skip-Gram

使用目标词target来反向预测上下文context。

需要注意的是,上下文单词有可能是有多的,而target只有一个,用target去预测一组上下文单词是比较困难的(可能把组当成是一个元素,存储空间太大了),于是预测的目标还是将一组单词进行拆分。

存在的问题

内容过多导致反向传播和梯度下降的执行过程所耗费的时间相对大。

解决方案

使用分层softmax和负采样。

负采样前

负采样后

由此观察,dim从V降成了5

其他技巧

f代表频次,f(w)即w这个词出现的次数。

而按次数去区分词,可以将词分为高频词和罕见词。

罕见词相比高频词能够蕴含更多的含义。

比如说"的","了"等助词只能在结构上起到完善的作用。

而罕见词往往能够带来更多的意义和区分度,更具有信息价值,所以可以通过上述这个可通过t来调节的式子来提前删去高频词。

相关推荐
玄同76515 小时前
LangChain v1.0+ Retrieval模块完全指南:从文档加载到RAG实战
人工智能·langchain·知识图谱·embedding·知识库·向量数据库·rag
deepdata_cn15 小时前
为什么AI需要因果?
人工智能·因果学习
说私域15 小时前
社群招募文案的核心构建要点与工具赋能路径——基于AI智能名片链动2+1模式商城小程序的实践研究
人工智能·小程序·私域运营
LaughingZhu15 小时前
Product Hunt 每日热榜 | 2026-01-31
大数据·人工智能·经验分享·搜索引擎·产品运营
下午写HelloWorld15 小时前
一维卷积神经网络 (1D CNN)
人工智能·神经网络·cnn
Sagittarius_A*15 小时前
形态学与多尺度处理:计算机视觉中图像形状与尺度的基础处理框架【计算机视觉】
图像处理·人工智能·python·opencv·计算机视觉
小润nature15 小时前
Moltbot/OpenClaw Gateway 命令和交互
人工智能
tongxianchao15 小时前
TOKEN MERGING YOUR VIT BUT FASTER
人工智能
自可乐15 小时前
LangGraph从入门到精通:构建智能Agent的完整指南
人工智能·python·机器学习
下午写HelloWorld15 小时前
差分隐私深度学习(DP-DL)简要理解
人工智能·深度学习