大模型|基础_word2vec

文章目录

Word2Vec

将词转化为向量后,会发现king和queen的差别与man和woman的差别是类似的,而在几何空间上,这样的差别将会以平行的关系进行表达。

会使用滑动窗口的机制。

滑动窗口内会有一个target目标词(上图蓝色部分),滑动窗口其他部分就是context word上下文,可见,这个上下文大小受限于滑动窗口的大小。

词袋模型CBOW Continuous Bag-of-Words

通过上下文context预测目标词target。

比如通过Never和late去预测出too来,先通过one-hot编码来对Never和late进行编码,并且借编码结果分别找到对应的词向量,然后将never和late的词向量去取平均,在和词库里面的每个词的词向量去做点积(点积能够反映向量的相似性)处理,然后将各个点积的结果,然后用softmax将其转化成概率,概率最大者,即为推理出来的结果。

(不是很懂,为什么还要对已知的词进行预测,可能是为了训练模型,来提高下一次,窗口框住相同的词,能够迸出target)

Continuous Skip-Gram

使用目标词target来反向预测上下文context。

需要注意的是,上下文单词有可能是有多的,而target只有一个,用target去预测一组上下文单词是比较困难的(可能把组当成是一个元素,存储空间太大了),于是预测的目标还是将一组单词进行拆分。

存在的问题

内容过多导致反向传播和梯度下降的执行过程所耗费的时间相对大。

解决方案

使用分层softmax和负采样。

负采样前

负采样后

由此观察,dim从V降成了5

其他技巧

f代表频次,f(w)即w这个词出现的次数。

而按次数去区分词,可以将词分为高频词和罕见词。

罕见词相比高频词能够蕴含更多的含义。

比如说"的","了"等助词只能在结构上起到完善的作用。

而罕见词往往能够带来更多的意义和区分度,更具有信息价值,所以可以通过上述这个可通过t来调节的式子来提前删去高频词。

相关推荐
NocoBase2 分钟前
GitHub 上星星数量前 10 的 AI CRM 开源项目
人工智能·低代码·开源·github·无代码
小陈phd3 分钟前
大语言模型实战(二)——Transformer网络架构解读
人工智能·深度学习·transformer
言之。3 分钟前
Claude Code Commands 教学文档
人工智能
鲨莎分不晴7 分钟前
读心术:对手建模与心智理论 (Agent Modeling & Theory of Mind)
人工智能·机器学习
LiYingL12 分钟前
Pref-GRPO:通过成对比较实现稳定文本图像生成强化学习的新方法
人工智能
Felaim20 分钟前
[自动驾驶] 小鹏 FutureX 要点总结(小鹏)
人工智能·机器学习·自动驾驶
傅科摆 _ py21 分钟前
PCA 降维技术概览
人工智能
EasyCVR22 分钟前
视频汇聚平台EasyCVR筑牢消防领域可视化监控防线
运维·人工智能·音视频
飞哥数智坊23 分钟前
AI帮我搭猫窝:一场空间推理能力的实战测评
人工智能
Robot侠26 分钟前
ROS1从入门到精通 9: TF坐标变换(机器人的空间认知)
人工智能·机器人·ros·机器人操作系统·tf坐标变换