时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测

目录

预测效果






基本介绍

1.MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测(风电功率预测);

2.运行环境为Matlab2021b;

3.data为数据集,excel数据,单变量时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、MAPE、MSE、RMSE、RPD多指标评价;

模型描述

CNN-GRU-AdaBoost是一种将CNN-GRU和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-GRU-AdaBoost算法的基本思想是将CNN-GRU作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-LSTM模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

程序设计

clike 复制代码
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 100, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',70, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
软件算法开发8 天前
基于蘑菇繁殖优化的LSTM深度学习网络模型(MRO-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·matlab·lstm·时间序列预测·蘑菇繁殖优化·mro-lstm
机器学习之心8 天前
基于贝叶斯优化(BO)的 CNN-GRU 混合神经网络模型多输出回归预测MATLAB
cnn-gru·贝叶斯优化
core51211 天前
Adaboost (Adaptive Boosting):错题本上的逆袭
机器学习·adaboost·boosting
山科智能信息处理实验室24 天前
(ICLR-2024)TIME‑LLM:基于大语言模型重编程的时间序列预测
大语言模型·时间序列预测·重编程
机器学习之心1 个月前
NRBO-CNN-GRU、CNN-GRU、GRU牛顿-拉夫逊优化算法+三模型光伏功率多变量时间序列预测对比
gru·cnn-gru·nrbo-cnn-gru
软件算法开发1 个月前
基于秃鹰搜索优化的LSTM深度学习网络模型(BES-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·matlab·lstm·时间序列预测·秃鹰搜索优化·bes-lstm
时序大模型2 个月前
KDD2025 |DUET:时间 - 通道双聚类框架,多变量时序预测的 “全能选手”出现!
人工智能·机器学习·时间序列预测·时间序列·kdd2025
minhuan3 个月前
构建AI智能体:六十八、集成学习:从三个臭皮匠到AI集体智慧的深度解析
人工智能·机器学习·adaboost·集成学习·bagging
nju_spy3 个月前
2023 美赛C Predicting Wordle Results(上)
人工智能·机器学习·数学建模·数据挖掘·arima·时间序列预测·相关性分析
软件算法开发3 个月前
基于黑翅鸢优化的LSTM深度学习网络模型(BKA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·算法·lstm·时间序列预测·黑翅鸢优化·bka-lstm